Spaces:
Runtime error
Runtime error
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
# OpenAI Chat completion | |
import os | |
from openai import AsyncOpenAI # importing openai for API usage | |
import chainlit as cl # importing chainlit for our app | |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
from dotenv import load_dotenv | |
from aimakerspace.text_utils import PDFFileLoader, CharacterTextSplitter | |
from aimakerspace.vectordatabase import VectorDatabase | |
load_dotenv() | |
# ChatOpenAI Templates | |
system_template = """You are a Wizzard and everything you say is a spell! | |
""" | |
user_template = """{input} | |
Wizzard, think through your response step by step. | |
""" | |
assistant_template = """Use the following context, if any, to help you | |
answer the user's input, if the answer is not in the context say you don't | |
know the answer. | |
CONTEXT: | |
=============== | |
{context} | |
=============== | |
Spell away Wizzard! | |
""" | |
# marks a function that will be executed at the start of a user session | |
async def start_chat(): | |
settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
cl.user_session.set("settings", settings) | |
files = None | |
while files is None: | |
files = await cl.AskFileMessage( | |
content="Please upload a PDF file to begin", | |
accept=["application/pdf"], | |
max_files=10, | |
max_size_mb=10, | |
timeout=60 | |
).send() | |
# let the user know you are processing the file(s) | |
await cl.Message( | |
content="Loading your files..." | |
).send() | |
# decode the file | |
documents = PDFFileLoader(path="", files=files).load_documents() | |
# split the text into chunks | |
chunks = CharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200 | |
).split_texts(documents) | |
print(chunks[0]) | |
# create a vector store | |
# let the user know you are processing the document(s) | |
await cl.Message( | |
content="Creating vector store" | |
).send() | |
vector_db = VectorDatabase() | |
vector_db = await vector_db.abuild_from_list(chunks) | |
await cl.Message( | |
content="Done. Ask away!" | |
).send() | |
cl.user_session.set("vector_db", vector_db) | |
# marks a function that should be run each time the chatbot receives a message from a user | |
async def main(message: cl.Message): | |
vector_db = cl.user_session.get("vector_db") | |
settings = cl.user_session.get("settings") | |
client = AsyncOpenAI() | |
print(message.content) | |
results_list = vector_db.search_by_text(query_text=message.content, k=3, return_as_text=True) | |
if results_list: | |
results_string = "\n\n".join(results_list) | |
else: | |
results_string = "" | |
prompt = Prompt( | |
provider=ChatOpenAI.id, | |
messages=[ | |
PromptMessage( | |
role="system", | |
template=system_template, | |
formatted=system_template, | |
), | |
PromptMessage( | |
role="user", | |
template=user_template, | |
formatted=user_template.format(input=message.content), | |
), | |
PromptMessage( | |
role="assistant", | |
template=assistant_template, | |
formatted=assistant_template.format(context=results_string) | |
) | |
], | |
inputs={ | |
"input": message.content, | |
"context": results_string | |
}, | |
settings=settings, | |
) | |
print([m.to_openai() for m in prompt.messages]) | |
msg = cl.Message(content="") | |
# Call OpenAI | |
async for stream_resp in await client.chat.completions.create( | |
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings | |
): | |
token = stream_resp.choices[0].delta.content | |
if not token: | |
token = "" | |
await msg.stream_token(token) | |
# Update the prompt object with the completion | |
prompt.completion = msg.content | |
msg.prompt = prompt | |
# Send and close the message stream | |
await msg.send() | |