ChatitoRAG / app.py
RubenAMtz's picture
changed system prompt
2db47f1
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from dotenv import load_dotenv
from aimakerspace.text_utils import PDFFileLoader, CharacterTextSplitter
from aimakerspace.vectordatabase import VectorDatabase
load_dotenv()
# ChatOpenAI Templates
system_template = """You are a Wizzard and everything you say is a spell!
"""
user_template = """{input}
Wizzard, think through your response step by step.
"""
assistant_template = """Use the following context, if any, to help you
answer the user's input, if the answer is not in the context say you don't
know the answer.
CONTEXT:
===============
{context}
===============
Spell away Wizzard!
"""
@cl.on_chat_start # marks a function that will be executed at the start of a user session
async def start_chat():
settings = {
"model": "gpt-3.5-turbo",
"temperature": 0,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
cl.user_session.set("settings", settings)
files = None
while files is None:
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin",
accept=["application/pdf"],
max_files=10,
max_size_mb=10,
timeout=60
).send()
# let the user know you are processing the file(s)
await cl.Message(
content="Loading your files..."
).send()
# decode the file
documents = PDFFileLoader(path="", files=files).load_documents()
# split the text into chunks
chunks = CharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
).split_texts(documents)
print(chunks[0])
# create a vector store
# let the user know you are processing the document(s)
await cl.Message(
content="Creating vector store"
).send()
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(chunks)
await cl.Message(
content="Done. Ask away!"
).send()
cl.user_session.set("vector_db", vector_db)
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
vector_db = cl.user_session.get("vector_db")
settings = cl.user_session.get("settings")
client = AsyncOpenAI()
print(message.content)
results_list = vector_db.search_by_text(query_text=message.content, k=3, return_as_text=True)
if results_list:
results_string = "\n\n".join(results_list)
else:
results_string = ""
prompt = Prompt(
provider=ChatOpenAI.id,
messages=[
PromptMessage(
role="system",
template=system_template,
formatted=system_template,
),
PromptMessage(
role="user",
template=user_template,
formatted=user_template.format(input=message.content),
),
PromptMessage(
role="assistant",
template=assistant_template,
formatted=assistant_template.format(context=results_string)
)
],
inputs={
"input": message.content,
"context": results_string
},
settings=settings,
)
print([m.to_openai() for m in prompt.messages])
msg = cl.Message(content="")
# Call OpenAI
async for stream_resp in await client.chat.completions.create(
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
):
token = stream_resp.choices[0].delta.content
if not token:
token = ""
await msg.stream_token(token)
# Update the prompt object with the completion
prompt.completion = msg.content
msg.prompt = prompt
# Send and close the message stream
await msg.send()