# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import os from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv from aimakerspace.text_utils import PDFFileLoader, CharacterTextSplitter from aimakerspace.vectordatabase import VectorDatabase load_dotenv() # ChatOpenAI Templates system_template = """You are a Wizzard and everything you say is a spell! """ user_template = """{input} Wizzard, think through your response step by step. """ assistant_template = """Use the following context, if any, to help you answer the user's input, if the answer is not in the context say you don't know the answer. CONTEXT: =============== {context} =============== Spell away Wizzard! """ @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) files = None while files is None: files = await cl.AskFileMessage( content="Please upload a PDF file to begin", accept=["application/pdf"], max_files=10, max_size_mb=10, timeout=60 ).send() # let the user know you are processing the file(s) await cl.Message( content="Loading your files..." ).send() # decode the file documents = PDFFileLoader(path="", files=files).load_documents() # split the text into chunks chunks = CharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ).split_texts(documents) print(chunks[0]) # create a vector store # let the user know you are processing the document(s) await cl.Message( content="Creating vector store" ).send() vector_db = VectorDatabase() vector_db = await vector_db.abuild_from_list(chunks) await cl.Message( content="Done. Ask away!" ).send() cl.user_session.set("vector_db", vector_db) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): vector_db = cl.user_session.get("vector_db") settings = cl.user_session.get("settings") client = AsyncOpenAI() print(message.content) results_list = vector_db.search_by_text(query_text=message.content, k=3, return_as_text=True) if results_list: results_string = "\n\n".join(results_list) else: results_string = "" prompt = Prompt( provider=ChatOpenAI.id, messages=[ PromptMessage( role="system", template=system_template, formatted=system_template, ), PromptMessage( role="user", template=user_template, formatted=user_template.format(input=message.content), ), PromptMessage( role="assistant", template=assistant_template, formatted=assistant_template.format(context=results_string) ) ], inputs={ "input": message.content, "context": results_string }, settings=settings, ) print([m.to_openai() for m in prompt.messages]) msg = cl.Message(content="") # Call OpenAI async for stream_resp in await client.chat.completions.create( messages=[m.to_openai() for m in prompt.messages], stream=True, **settings ): token = stream_resp.choices[0].delta.content if not token: token = "" await msg.stream_token(token) # Update the prompt object with the completion prompt.completion = msg.content msg.prompt = prompt # Send and close the message stream await msg.send()