Spaces:
Runtime error
Runtime error
File size: 6,743 Bytes
7236a82 2b80e27 7236a82 ddfffbd 7236a82 50a738c 7236a82 26670aa 7236a82 e6a6695 7236a82 e6a6695 7236a82 e6a6695 7236a82 e6a6695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import pprint
import tempfile
from typing import Dict, Text
import numpy as np
import tensorflow as tf
import tensorflow_recommenders as tfrs
import os
import unidecode
from nltk import word_tokenize
import re
import pandas as pd
from nltk.util import ngrams
import base64
import hashlib
import gradio as gr
import scann
df=pd.read_csv("/home/user/app/Dubai_translated_best_2500.csv",sep=",",header=0)
df=df.drop_duplicates()
df=df.dropna()
df["nome_vaga"]=df["nome_vaga"].map(lambda x: x.lower().title())
df["requisito"]=df["requisito"].map(lambda x: x[0:1000].lower())
my_dict=dict(df.iloc[0:int(df.shape[0]*0.9),:])
my_dict_cego=dict(df.iloc[int(df.shape[0]*0.9):,:])
ratings = tf.data.Dataset.from_tensor_slices(my_dict).map(lambda x: {
"code": x["code"],
"nome_vaga": x["nome_vaga"],
"requisito": tf.strings.split(x["requisito"],maxsplit=106)
})
movies = tf.data.Dataset.from_tensor_slices(dict(df)).map(lambda x: {
"code": x["code"],
"nome_vaga": x["nome_vaga"]
})
movies = movies.map(lambda x: x["code"])
ratings_cego = tf.data.Dataset.from_tensor_slices(my_dict_cego).map(lambda x: {
"code": x["code"],
"requisito": tf.strings.split(x["requisito"],maxsplit=106)
})
tf.random.set_seed(42)
shuffled = ratings.shuffle(int(df.shape[0]*0.9), seed=42, reshuffle_each_iteration=False)
shuffled2 = ratings_cego.shuffle(int(df.shape[0]*0.1), seed=42, reshuffle_each_iteration=False)
train = shuffled.take(int(df.shape[0]*0.9))
test = shuffled.take(int(df.shape[0]*0.1))
cego=shuffled2
movie_titles = movies#.map(lambda x: x["code"])
user_ids = ratings.map(lambda x: x["requisito"])
xx=[]
for x in user_ids.as_numpy_iterator():
try:
xx.append(x)
except:
pass
unique_movie_titles = np.unique(list(movie_titles.as_numpy_iterator()))
unique_user_ids = np.unique(np.concatenate(xx))
user_ids=user_ids.batch(int(df.shape[0]*0.9))
layer = tf.keras.layers.StringLookup(vocabulary=unique_user_ids)
unique_movie_titles[:10]
embedding_dimension = 768
user_model = tf.keras.Sequential([
tf.keras.layers.StringLookup(
vocabulary=unique_user_ids, mask_token=None),
# We add an additional embedding to account for unknown tokens.
tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension),
])
movie_model = tf.keras.Sequential([
tf.keras.layers.StringLookup(
vocabulary=unique_movie_titles, mask_token=None),
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension)
])
metrics = tfrs.metrics.FactorizedTopK(
candidates=movies.batch(df.shape[0]
).map(movie_model)
)
task = tfrs.tasks.Retrieval(
metrics=metrics
)
class MovielensModel(tfrs.Model):
def __init__(self, user_model, movie_model):
super().__init__()
self.movie_model: tf.keras.Model = movie_model
self.user_model: tf.keras.Model = user_model
self.task: tf.keras.layers.Layer = task
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["requisito"])
positive_movie_embeddings = self.movie_model(features["code"])
return self.task(tf.reduce_sum(user_embeddings,axis=1), positive_movie_embeddings)
class NoBaseClassMovielensModel(tf.keras.Model):
def __init__(self, user_model, movie_model):
super().__init__()
self.movie_model: tf.keras.Model = movie_model
self.user_model: tf.keras.Model = user_model
self.task: tf.keras.layers.Layer = task
def train_step(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
with tf.GradientTape() as tape:
user_embeddings = self.user_model(features["requisito"])
positive_movie_embeddings = self.movie_model(features["code"])
loss = self.task(user_embeddings, positive_movie_embeddings)
regularization_loss = sum(self.losses)
total_loss = loss + regularization_loss
gradients = tape.gradient(total_loss, self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
metrics = {metric.name: metric.result() for metric in self.metrics}
metrics["loss"] = loss
metrics["regularization_loss"] = regularization_loss
metrics["total_loss"] = total_loss
return metrics
def test_step(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
user_embeddings = self.user_model(features["requisito"])
positive_movie_embeddings = self.movie_model(features["code"])
loss = self.task(user_embeddings, positive_movie_embeddings)
regularization_loss = sum(self.losses)
total_loss = loss + regularization_loss
metrics = {metric.name: metric.result() for metric in self.metrics}
metrics["loss"] = loss
metrics["regularization_loss"] = regularization_loss
metrics["total_loss"] = total_loss
return metrics
model = MovielensModel(user_model, movie_model)
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.08))
cached_train = train.shuffle(int(df.shape[0]*0.9)).batch(int(df.shape[0]*0.9)).cache()
cached_test = test.batch(int(df.shape[0]*0.1)).cache()
path = os.path.join("/home/user/app/", "model/")
cp_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=path,
verbose=1,
save_weights_only=True,
save_freq=2)
model.fit(cached_train, callbacks=[cp_callback],epochs=100)
index=df["code"].map(lambda x: [model.movie_model(tf.constant(x))])
indice=[]
for i in range(0,1633):
indice.append(np.array(index)[i][0])
searcher = scann.scann_ops_pybind.builder(np.array(indice), 10, "dot_product").tree(
num_leaves=1500, num_leaves_to_search=500, training_sample_size=df.shape[0]).score_brute_force(
2, quantize=True).build()
import matplotlib.pyplot as plt
def predict(text):
campos=str(text).lower()
query=np.sum([model.user_model(tf.constant(campos.split()[i])) for i in range(0,len(campos.split()))],axis=0)
neighbors, distances = searcher.search_batched([query])
xx = df.iloc[neighbors[0],:].nome_vaga
fig = plt.figure(figsize=(14,9))
plt.bar(list(xx),distances[0]*0.8*10)
plt.title('Degree of match')
plt.xlabel('Labels')
plt.xticks(rotation=270)
plt.ylabel('Distances')
for x, y in zip(list(range(0,10)),distances[0]*0.8*10):
plt.text(x, y, y, ha='center', va='bottom', fontsize=12, color='black')
return xx, fig
demo = gr.Interface(fn=predict, inputs=gr.inputs.Textbox(label='CANDIDATE COMPETENCES - Click *Clear* before adding new input'), \
outputs=[gr.outputs.Textbox(label='SUGGESTED VACANCIES'),\
gr.Plot()],\
css='div {margin-left: auto; margin-right: auto; width: 100%;\
background-image: url("https://drive.google.com/uc?export=view&id=1KNnISAUcvh2Pt08f-EJZJYCIgkrKw3PI"); repeat 0 0;}')\
.launch(share=False)
|