Commit
·
1fb8ae3
1
Parent(s):
2a1de95
decouple ds loading from retriever
Browse files- main.py +5 -2
- src/retrievers/es_retriever.py +5 -1
- src/retrievers/faiss_retriever.py +19 -50
main.py
CHANGED
@@ -27,11 +27,14 @@ if __name__ == '__main__':
|
|
27 |
|
28 |
# logger.info(questions)
|
29 |
|
|
|
|
|
|
|
30 |
# Initialize retriever
|
31 |
-
retriever = FaissRetriever()
|
32 |
|
33 |
# Retrieve example
|
34 |
-
#random.seed(111)
|
35 |
random_index = random.randint(0, len(questions_test["question"])-1)
|
36 |
example_q = questions_test["question"][random_index]
|
37 |
example_a = questions_test["answer"][random_index]
|
|
|
27 |
|
28 |
# logger.info(questions)
|
29 |
|
30 |
+
dataset_paragraphs = cast(DatasetDict, load_dataset(
|
31 |
+
"GroNLP/ik-nlp-22_slp", "paragraphs"))
|
32 |
+
|
33 |
# Initialize retriever
|
34 |
+
retriever = FaissRetriever(dataset_paragraphs)
|
35 |
|
36 |
# Retrieve example
|
37 |
+
# random.seed(111)
|
38 |
random_index = random.randint(0, len(questions_test["question"])-1)
|
39 |
example_q = questions_test["question"][random_index]
|
40 |
example_a = questions_test["answer"][random_index]
|
src/retrievers/es_retriever.py
CHANGED
@@ -1,10 +1,14 @@
|
|
|
|
1 |
from src.utils.log import get_logger
|
|
|
|
|
2 |
|
3 |
logger = get_logger()
|
4 |
|
5 |
|
6 |
class ESRetriever(Retriever):
|
7 |
-
def __init__(self, data_set):
|
|
|
8 |
pass
|
9 |
|
10 |
def retrieve(self, query: str, k: int):
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
from src.utils.log import get_logger
|
3 |
+
from src.retrievers.base_retriever import Retriever
|
4 |
+
|
5 |
|
6 |
logger = get_logger()
|
7 |
|
8 |
|
9 |
class ESRetriever(Retriever):
|
10 |
+
def __init__(self, data_set: ) -> None:
|
11 |
+
|
12 |
pass
|
13 |
|
14 |
def retrieve(self, query: str, k: int):
|
src/retrievers/faiss_retriever.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import os.path
|
3 |
|
4 |
import torch
|
5 |
-
from datasets import load_dataset
|
6 |
from transformers import (
|
7 |
DPRContextEncoder,
|
8 |
DPRContextEncoderTokenizer,
|
@@ -26,14 +26,7 @@ class FaissRetriever(Retriever):
|
|
26 |
based on https://huggingface.co/docs/datasets/faiss_es#faiss.
|
27 |
"""
|
28 |
|
29 |
-
def __init__(self,
|
30 |
-
"""Initialize the retriever
|
31 |
-
|
32 |
-
Args:
|
33 |
-
dataset (str, optional): The dataset to train on. Assumes the
|
34 |
-
information is stored in a column named 'text'. Defaults to
|
35 |
-
"GroNLP/ik-nlp-22_slp".
|
36 |
-
"""
|
37 |
torch.set_grad_enabled(False)
|
38 |
|
39 |
# Context encoding and tokenization
|
@@ -52,36 +45,22 @@ class FaissRetriever(Retriever):
|
|
52 |
"facebook/dpr-question_encoder-single-nq-base"
|
53 |
)
|
54 |
|
55 |
-
|
56 |
-
self.
|
57 |
-
|
|
|
58 |
|
59 |
-
def
|
60 |
self,
|
61 |
-
dataset_name: str,
|
62 |
-
embedding_path: str = "./src/models/paragraphs_embedding.faiss",
|
63 |
force_new_embedding: bool = False):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
Dataset: A dataset with a new column 'embeddings' containing FAISS
|
73 |
-
embeddings.
|
74 |
-
"""
|
75 |
-
# Load dataset
|
76 |
-
ds = load_dataset(dataset_name, name="paragraphs")[
|
77 |
-
"train"] # type: ignore
|
78 |
-
|
79 |
-
if not force_new_embedding and os.path.exists(embedding_path):
|
80 |
-
# If we already have FAISS embeddings, load them from disk
|
81 |
-
ds.load_faiss_index('embeddings', embedding_path) # type: ignore
|
82 |
return ds
|
83 |
else:
|
84 |
-
# If there are no FAISS embeddings, generate them
|
85 |
def embed(row):
|
86 |
# Inline helper function to perform embedding
|
87 |
p = row["text"]
|
@@ -91,35 +70,25 @@ class FaissRetriever(Retriever):
|
|
91 |
return {"embeddings": enc}
|
92 |
|
93 |
# Add FAISS embeddings
|
94 |
-
|
95 |
|
96 |
-
|
97 |
|
98 |
# save dataset w/ embeddings
|
99 |
os.makedirs("./src/models/", exist_ok=True)
|
100 |
-
|
|
|
101 |
|
102 |
-
return
|
103 |
|
104 |
def retrieve(self, query: str, k: int = 5):
|
105 |
-
"""Retrieve the top k matches for a search query.
|
106 |
-
|
107 |
-
Args:
|
108 |
-
query (str): A search query
|
109 |
-
k (int, optional): The number of documents to retrieve. Defaults to
|
110 |
-
5.
|
111 |
-
|
112 |
-
Returns:
|
113 |
-
tuple: A tuple of lists of scores and results.
|
114 |
-
"""
|
115 |
-
|
116 |
def embed(q):
|
117 |
# Inline helper function to perform embedding
|
118 |
tok = self.q_tokenizer(q, return_tensors="pt", truncation=True)
|
119 |
return self.q_encoder(**tok)[0][0].numpy()
|
120 |
|
121 |
question_embedding = embed(query)
|
122 |
-
scores, results = self.
|
123 |
"embeddings", question_embedding, k=k
|
124 |
)
|
125 |
|
|
|
2 |
import os.path
|
3 |
|
4 |
import torch
|
5 |
+
from datasets import DatasetDict, load_dataset
|
6 |
from transformers import (
|
7 |
DPRContextEncoder,
|
8 |
DPRContextEncoderTokenizer,
|
|
|
26 |
based on https://huggingface.co/docs/datasets/faiss_es#faiss.
|
27 |
"""
|
28 |
|
29 |
+
def __init__(self, dataset: DatasetDict, embedding_path: str = "./src/models/paragraphs_embedding.faiss") -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
torch.set_grad_enabled(False)
|
31 |
|
32 |
# Context encoding and tokenization
|
|
|
45 |
"facebook/dpr-question_encoder-single-nq-base"
|
46 |
)
|
47 |
|
48 |
+
self.dataset = dataset
|
49 |
+
self.embedding_path = embedding_path
|
50 |
+
|
51 |
+
self.index = self._init_index()
|
52 |
|
53 |
+
def _init_index(
|
54 |
self,
|
|
|
|
|
55 |
force_new_embedding: bool = False):
|
56 |
+
|
57 |
+
ds = self.dataset["train"]
|
58 |
+
|
59 |
+
if not force_new_embedding and os.path.exists(self.embedding_path):
|
60 |
+
ds.load_faiss_index(
|
61 |
+
'embeddings', self.embedding_path) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return ds
|
63 |
else:
|
|
|
64 |
def embed(row):
|
65 |
# Inline helper function to perform embedding
|
66 |
p = row["text"]
|
|
|
70 |
return {"embeddings": enc}
|
71 |
|
72 |
# Add FAISS embeddings
|
73 |
+
index = ds.map(embed) # type: ignore
|
74 |
|
75 |
+
index.add_faiss_index(column="embeddings")
|
76 |
|
77 |
# save dataset w/ embeddings
|
78 |
os.makedirs("./src/models/", exist_ok=True)
|
79 |
+
index.save_faiss_index(
|
80 |
+
"embeddings", self.embedding_path)
|
81 |
|
82 |
+
return index
|
83 |
|
84 |
def retrieve(self, query: str, k: int = 5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def embed(q):
|
86 |
# Inline helper function to perform embedding
|
87 |
tok = self.q_tokenizer(q, return_tensors="pt", truncation=True)
|
88 |
return self.q_encoder(**tok)[0][0].numpy()
|
89 |
|
90 |
question_embedding = embed(query)
|
91 |
+
scores, results = self.index.get_nearest_examples(
|
92 |
"embeddings", question_embedding, k=k
|
93 |
)
|
94 |
|