from typing import Callable, List from base_model.string_utils import lower, remove_articles, remove_punc, white_space_fix def normalize_text(inp: str, preprocessing_functions: List[Callable[[str], str]]): for fun in preprocessing_functions: inp = fun(inp) return inp def normalize_text_default(inp: str) -> str: """Preprocesses the sentence string by normalizing. Args: s (str): the sentence Returns: string: normalized with default parames """ steps = [remove_articles, white_space_fix, remove_punc, lower] return normalize_text(inp, steps) def compute_exact_match(prediction: str, answer: str) -> int: """Computes exact match for sentences. Args: prediction (str): the predicted answer answer (str): the gold answer Returns: int: 1 for exact match, 0 for not """ return int(normalize_text_default(prediction) == normalize_text_default(answer)) def compute_f1(prediction: str, answer: str) -> float: """Computes F1-score on token overlap for sentences. Args: prediction (str): the predicted answer answer (str): the gold answer Returns: boolean: the f1 score """ pred_tokens = normalize_text_default(prediction).split() answer_tokens = normalize_text_default(answer).split() if len(pred_tokens) == 0 or len(answer_tokens) == 0: return int(pred_tokens == answer_tokens) common_tokens = set(pred_tokens) & set(answer_tokens) if len(common_tokens) == 0: return 0 prec = len(common_tokens) / len(pred_tokens) rec = len(common_tokens) / len(answer_tokens) return 2 * (prec * rec) / (prec + rec)