File size: 20,671 Bytes
ec0c8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import numpy as np
from typing import *
from numbers import Number

from ._helpers import batched
from . import transforms
from . import mesh

__all__ = [
    'sliding_window_1d',
    'sliding_window_nd',
    'sliding_window_2d',
    'max_pool_1d',
    'max_pool_2d',
    'max_pool_nd',
    'depth_edge',
    'depth_aliasing',
    'interpolate',
    'image_scrcoord',
    'image_uv',
    'image_pixel_center',
    'image_pixel',
    'image_mesh',
    'image_mesh_from_depth',
    'depth_to_normal',
    'point_to_normal',
    'chessboard',
    'cube',
    'square',
    'camera_frustum',
    'to4x4'
]


def sliding_window_1d(x: np.ndarray, window_size: int, stride: int, axis: int = -1):
    """
    Return x view of the input array with x sliding window of the given kernel size and stride.
    The sliding window is performed over the given axis, and the window dimension is append to the end of the output array's shape.

    Args:
        x (np.ndarray): input array with shape (..., axis_size, ...)
        kernel_size (int): size of the sliding window
        stride (int): stride of the sliding window
        axis (int): axis to perform sliding window over
    
    Returns:
        a_sliding (np.ndarray): view of the input array with shape (..., n_windows, ..., kernel_size), where n_windows = (axis_size - kernel_size + 1) // stride
    """
    assert x.shape[axis] >= window_size, f"kernel_size ({window_size}) is larger than axis_size ({x.shape[axis]})"
    axis = axis % x.ndim
    shape = (*x.shape[:axis], (x.shape[axis] - window_size + 1) // stride, *x.shape[axis + 1:], window_size)
    strides = (*x.strides[:axis], stride * x.strides[axis], *x.strides[axis + 1:], x.strides[axis])
    x_sliding = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
    return x_sliding


def sliding_window_nd(x: np.ndarray, window_size: Tuple[int,...], stride: Tuple[int,...], axis: Tuple[int,...]) -> np.ndarray:
    axis = [axis[i] % x.ndim for i in range(len(axis))]
    for i in range(len(axis)):
        x = sliding_window_1d(x, window_size[i], stride[i], axis[i])
    return x


def sliding_window_2d(x: np.ndarray, window_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)) -> np.ndarray:
    if isinstance(window_size, int):
        window_size = (window_size, window_size)
    if isinstance(stride, int):
        stride = (stride, stride)
    return sliding_window_nd(x, window_size, stride, axis)


def max_pool_1d(x: np.ndarray, kernel_size: int, stride: int, padding: int = 0, axis: int = -1):
    axis = axis % x.ndim
    if padding > 0:
        fill_value = np.nan if x.dtype.kind == 'f' else np.iinfo(x.dtype).min
        padding_arr = np.full((*x.shape[:axis], padding, *x.shape[axis + 1:]), fill_value=fill_value, dtype=x.dtype)
        x = np.concatenate([padding_arr, x, padding_arr], axis=axis)
    a_sliding = sliding_window_1d(x, kernel_size, stride, axis)
    max_pool = np.nanmax(a_sliding, axis=-1)
    return max_pool


def max_pool_nd(x: np.ndarray, kernel_size: Tuple[int,...], stride: Tuple[int,...], padding: Tuple[int,...], axis: Tuple[int,...]) -> np.ndarray:
    for i in range(len(axis)):
        x = max_pool_1d(x, kernel_size[i], stride[i], padding[i], axis[i])
    return x


def max_pool_2d(x: np.ndarray, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)):
    if isinstance(kernel_size, Number):
        kernel_size = (kernel_size, kernel_size)
    if isinstance(stride, Number):
        stride = (stride, stride)
    if isinstance(padding, Number):
        padding = (padding, padding)
    axis = tuple(axis)
    return max_pool_nd(x, kernel_size, stride, padding, axis)


def depth_edge(depth: np.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: np.ndarray = None) -> np.ndarray:
    """
    Compute the edge mask of x depth map. The edge is defined as the pixels whose neighbors have x large difference in depth.
    
    Args:
        depth (np.ndarray): shape (..., height, width), linear depth map
        atol (float): absolute tolerance
        rtol (float): relative tolerance

    Returns:
        edge (np.ndarray): shape (..., height, width) of dtype torch.bool
    """
    if mask is None:
        diff = (max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) + max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2))
    else:
        diff = (max_pool_2d(np.where(mask, depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) + max_pool_2d(np.where(mask, -depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2))

    edge = np.zeros_like(depth, dtype=bool)
    if atol is not None:
        edge |= diff > atol
    if rtol is not None:
        edge |= diff / depth > rtol
    return edge


def depth_aliasing(depth: np.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: np.ndarray = None) -> np.ndarray:
    """
    Compute the map that indicates the aliasing of x depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
    Args:
        depth (np.ndarray): shape (..., height, width), linear depth map
        atol (float): absolute tolerance
        rtol (float): relative tolerance

    Returns:
        edge (np.ndarray): shape (..., height, width) of dtype torch.bool
    """
    if mask is None:
        diff_max = max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) - depth
        diff_min = max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2) + depth
    else:
        diff_max = max_pool_2d(np.where(mask, depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) - depth
        diff_min = max_pool_2d(np.where(mask, -depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) + depth
    diff = np.minimum(diff_max, diff_min)

    edge = np.zeros_like(depth, dtype=bool)
    if atol is not None:
        edge |= diff > atol
    if rtol is not None:
        edge |= diff / depth > rtol
    return edge

def point_to_normal(point: np.ndarray, mask: np.ndarray = None) -> np.ndarray:
    """
    Calculate normal map from point map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

    Args:
        point (np.ndarray): shape (height, width, 3), point map
    Returns:
        normal (np.ndarray): shape (height, width, 3), normal map. 
    """
    height, width = point.shape[-3:-1]
    has_mask = mask is not None

    if mask is None:
        mask = np.ones_like(point[..., 0], dtype=bool)
    mask_pad = np.zeros((height + 2, width + 2), dtype=bool)
    mask_pad[1:-1, 1:-1] = mask
    mask = mask_pad

    pts = np.zeros((height + 2, width + 2, 3), dtype=point.dtype)
    pts[1:-1, 1:-1, :] = point
    up = pts[:-2, 1:-1, :] - pts[1:-1, 1:-1, :]
    left = pts[1:-1, :-2, :] - pts[1:-1, 1:-1, :]
    down = pts[2:, 1:-1, :] - pts[1:-1, 1:-1, :]
    right = pts[1:-1, 2:, :] - pts[1:-1, 1:-1, :]
    normal = np.stack([
        np.cross(up, left, axis=-1),
        np.cross(left, down, axis=-1),
        np.cross(down, right, axis=-1),
        np.cross(right, up, axis=-1),
    ])
    normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
    valid = np.stack([
        mask[:-2, 1:-1] & mask[1:-1, :-2],
        mask[1:-1, :-2] & mask[2:, 1:-1],
        mask[2:, 1:-1] & mask[1:-1, 2:],
        mask[1:-1, 2:] & mask[:-2, 1:-1],
    ]) & mask[None, 1:-1, 1:-1]
    normal = (normal * valid[..., None]).sum(axis=0)
    normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
    
    if has_mask:
        return normal, valid.any(axis=0)
    else:
        return normal


def depth_to_normal(depth: np.ndarray, intrinsics: np.ndarray, mask: np.ndarray = None) -> np.ndarray:
    """
    Calculate normal map from depth map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.

    Args:
        depth (np.ndarray): shape (height, width), linear depth map
        intrinsics (np.ndarray): shape (3, 3), intrinsics matrix
    Returns:
        normal (np.ndarray): shape (height, width, 3), normal map. 
    """
    has_mask = mask is not None

    height, width = depth.shape[-2:]
    if mask is None:
        mask = np.ones_like(depth, dtype=bool)

    uv = image_uv(width=width, height=height, dtype=np.float32)
    pts = transforms.unproject_cv(uv, depth, intrinsics=intrinsics, extrinsics=None)
    
    return point_to_normal(pts, mask)

def interpolate(bary: np.ndarray, tri_id: np.ndarray, attr: np.ndarray, faces: np.ndarray) -> np.ndarray:
    """Interpolate with given barycentric coordinates and triangle indices

    Args:
        bary (np.ndarray): shape (..., 3), barycentric coordinates
        tri_id (np.ndarray): int array of shape (...), triangle indices
        attr (np.ndarray): shape (N, M), vertices attributes
        faces (np.ndarray): int array of shape (T, 3), face vertex indices

    Returns:
        np.ndarray: shape (..., M) interpolated result
    """
    faces_ = np.concatenate([np.zeros((1, 3), dtype=faces.dtype), faces + 1], axis=0)
    attr_ = np.concatenate([np.zeros((1, attr.shape[1]), dtype=attr.dtype), attr], axis=0)
    return np.sum(bary[..., None] * attr_[faces_[tri_id + 1]], axis=-2)


def image_scrcoord(
    width: int,
    height: int,
) -> np.ndarray:
    """
    Get OpenGL's screen space coordinates, ranging in [0, 1].
    [0, 0] is the bottom-left corner of the image.

    Args:
        width (int): image width
        height (int): image height

    Returns:
        (np.ndarray): shape (height, width, 2)
    """
    x, y = np.meshgrid(
        np.linspace(0.5 / width, 1 - 0.5 / width, width, dtype=np.float32),
        np.linspace(1 - 0.5 / height, 0.5 / height, height, dtype=np.float32),
        indexing='xy'
    )
    return np.stack([x, y], axis=2)


def image_uv(
    height: int,
    width: int,
    left: int = None,
    top: int = None,
    right: int = None,
    bottom: int = None,
    dtype: np.dtype = np.float32
) -> np.ndarray:
    """
    Get image space UV grid, ranging in [0, 1]. 

    >>> image_uv(10, 10):
    [[[0.05, 0.05], [0.15, 0.05], ..., [0.95, 0.05]],
     [[0.05, 0.15], [0.15, 0.15], ..., [0.95, 0.15]],
      ...             ...                  ...
     [[0.05, 0.95], [0.15, 0.95], ..., [0.95, 0.95]]]

    Args:
        width (int): image width
        height (int): image height

    Returns:
        np.ndarray: shape (height, width, 2)
    """
    if left is None: left = 0
    if top is None: top = 0
    if right is None: right = width
    if bottom is None: bottom = height
    u = np.linspace((left + 0.5) / width, (right - 0.5) / width, right - left, dtype=dtype)
    v = np.linspace((top + 0.5) / height, (bottom - 0.5) / height, bottom - top, dtype=dtype)
    u, v = np.meshgrid(u, v, indexing='xy')
    return np.stack([u, v], axis=2)


def image_pixel_center(
    height: int,
    width: int,
    left: int = None,
    top: int = None,
    right: int = None,
    bottom: int = None,
    dtype: np.dtype = np.float32
) -> np.ndarray:
    """
    Get image pixel center coordinates, ranging in [0, width] and [0, height].
    `image[i, j]` has pixel center coordinates `(j + 0.5, i + 0.5)`.

    >>> image_pixel_center(10, 10):
    [[[0.5, 0.5], [1.5, 0.5], ..., [9.5, 0.5]],
     [[0.5, 1.5], [1.5, 1.5], ..., [9.5, 1.5]],
      ...             ...                  ...
    [[0.5, 9.5], [1.5, 9.5], ..., [9.5, 9.5]]]

    Args:
        width (int): image width
        height (int): image height

    Returns:
        np.ndarray: shape (height, width, 2)
    """
    if left is None: left = 0
    if top is None: top = 0
    if right is None: right = width
    if bottom is None: bottom = height
    u = np.linspace(left + 0.5, right - 0.5, right - left, dtype=dtype)
    v = np.linspace(top + 0.5, bottom - 0.5, bottom - top, dtype=dtype)
    u, v = np.meshgrid(u, v, indexing='xy')
    return np.stack([u, v], axis=2)

def image_pixel(
    height: int,
    width: int,
    left: int = None,
    top: int = None,
    right: int = None,
    bottom: int = None,
    dtype: np.dtype = np.int32
) -> np.ndarray:
    """
    Get image pixel coordinates grid, ranging in [0, width - 1] and [0, height - 1].
    `image[i, j]` has pixel center coordinates `(j, i)`.

    >>> image_pixel_center(10, 10):
    [[[0, 0], [1, 0], ..., [9, 0]],
     [[0, 1.5], [1, 1], ..., [9, 1]],
      ...             ...                  ...
    [[0, 9.5], [1, 9], ..., [9, 9 ]]]

    Args:
        width (int): image width
        height (int): image height

    Returns:
        np.ndarray: shape (height, width, 2)
    """
    if left is None: left = 0
    if top is None: top = 0
    if right is None: right = width
    if bottom is None: bottom = height
    u = np.arange(left, right, dtype=dtype)
    v = np.arange(top, bottom, dtype=dtype)
    u, v = np.meshgrid(u, v, indexing='xy')
    return np.stack([u, v], axis=2)


def image_mesh(
    height: int,
    width: int,
    mask: np.ndarray = None,
    tri: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Get x quad mesh regarding image pixel uv coordinates as vertices and image grid as faces.

    Args:
        width (int): image width
        height (int): image height
        mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.

    Returns:
        uv (np.ndarray): uv corresponding to pixels as described in image_uv()
        faces (np.ndarray): quad faces connecting neighboring pixels
        indices (np.ndarray, optional): indices of vertices in the original mesh
    """
    if mask is not None:
        assert mask.shape[0] == height and mask.shape[1] == width
        assert mask.dtype == np.bool_
    uv = image_uv(height, width).reshape((-1, 2))
    row_faces = np.stack([np.arange(0, width - 1, dtype=np.int32), np.arange(width, 2 * width - 1, dtype=np.int32), np.arange(1 + width, 2 * width, dtype=np.int32), np.arange(1, width, dtype=np.int32)], axis=1)
    faces = (np.arange(0, (height - 1) * width, width, dtype=np.int32)[:, None, None] + row_faces[None, :, :]).reshape((-1, 4))
    if mask is not None:
        quad_mask = (mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]).ravel()
        faces = faces[quad_mask]
        faces, uv, indices = mesh.remove_unreferenced_vertices(faces, uv, return_indices=True)
        if tri:
            faces = mesh.triangulate(faces)
        return uv, faces, indices
    if tri:
        faces = mesh.triangulate(faces)
    return uv, faces


def image_mesh_from_depth(
    depth: np.ndarray,
    extrinsics: np.ndarray = None,
    intrinsics: np.ndarray = None,
    *vertice_attrs: np.ndarray,
    atol: float = None,
    rtol: float = None,
    remove_by_depth: bool = False,
    return_uv: bool = False,
    return_indices: bool = False
) -> Tuple[np.ndarray, ...]:
    """
    Get x triangle mesh by lifting depth map to 3D.

    Args:
        depth (np.ndarray): [H, W] depth map
        extrinsics (np.ndarray, optional): [4, 4] extrinsics matrix. Defaults to None.
        intrinsics (np.ndarray, optional): [3, 3] intrinsics matrix. Defaults to None.
        *vertice_attrs (np.ndarray): [H, W, C] vertex attributes. Defaults to None.
        atol (float, optional): absolute tolerance. Defaults to None.
        rtol (float, optional): relative tolerance. Defaults to None.
            triangles with vertices having depth difference larger than atol + rtol * depth will be marked.
        remove_by_depth (bool, optional): whether to remove triangles with large depth difference. Defaults to True.
        return_uv (bool, optional): whether to return uv coordinates. Defaults to False.
        return_indices (bool, optional): whether to return indices of vertices in the original mesh. Defaults to False.

    Returns:
        vertices (np.ndarray): [N, 3] vertices
        faces (np.ndarray): [T, 3] faces
        *vertice_attrs (np.ndarray): [N, C] vertex attributes
        image_uv (np.ndarray, optional): [N, 2] uv coordinates
        ref_indices (np.ndarray, optional): [N] indices of vertices in the original mesh
    """
    height, width = depth.shape
    image_uv, image_face = image_mesh(height, width)
    depth = depth.reshape(-1)
    pts = transforms.unproject_cv(image_uv, depth, extrinsics, intrinsics)
    image_face = mesh.triangulate(image_face, vertices=pts)
    ref_indices = None
    ret = []
    if atol is not None or rtol is not None:
        atol = 0 if atol is None else atol
        rtol = 0 if rtol is None else rtol
        mean = depth[image_face].mean(axis=1)
        diff = np.max(np.abs(depth[image_face] - depth[image_face[:, [1, 2, 0]]]), axis=1)
        mask = (diff <= atol + rtol * mean)
        image_face_ = image_face[mask]
        image_face_, ref_indices = mesh.remove_unreferenced_vertices(image_face_, return_indices=True)

    remove = remove_by_depth and ref_indices is not None
    if remove:
        pts = pts[ref_indices]
        image_face = image_face_
    ret += [pts, image_face]
    for attr in vertice_attrs:
        ret.append(attr.reshape(-1, attr.shape[-1]) if not remove else attr.reshape(-1, attr.shape[-1])[ref_indices])
    if return_uv:
        ret.append(image_uv if not remove else image_uv[ref_indices])
    if return_indices and ref_indices is not None:
        ret.append(ref_indices)
    return tuple(ret)


def chessboard(width: int, height: int, grid_size: int, color_a: np.ndarray, color_b: np.ndarray) -> np.ndarray:
    """get x chessboard image

    Args:
        width (int): image width
        height (int): image height
        grid_size (int): size of chessboard grid
        color_a (np.ndarray): color of the grid at the top-left corner
        color_b (np.ndarray): color in complementary grid cells

    Returns:
        image (np.ndarray): shape (height, width, channels), chessboard image
    """
    x = np.arange(width) // grid_size
    y = np.arange(height) // grid_size
    mask = (x[None, :] + y[:, None]) % 2
    image = (1 - mask[..., None]) * color_a + mask[..., None] * color_b
    return image


def square(tri: bool = False) -> Tuple[np.ndarray, np.ndarray]: 
    """
    Get a square mesh of area 1 centered at origin in the xy-plane.

    ### Returns
        vertices (np.ndarray): shape (4, 3)
        faces (np.ndarray): shape (1, 4)
    """
    vertices = np.array([
        [-0.5, 0.5, 0],   [0.5, 0.5, 0],   [0.5, -0.5, 0],   [-0.5, -0.5, 0] # v0-v1-v2-v3
    ], dtype=np.float32)
    if tri:
        faces = np.array([[0, 1, 2], [0, 2, 3]], dtype=np.int32)
    else:
        faces = np.array([[0, 1, 2, 3]], dtype=np.int32)
    return vertices, faces  


def cube(tri: bool = False) -> Tuple[np.ndarray, np.ndarray]:
    """
    Get x cube mesh of size 1 centered at origin.

    ### Parameters
        tri (bool, optional): return triangulated mesh. Defaults to False, which returns quad mesh.

    ### Returns
        vertices (np.ndarray): shape (8, 3) 
        faces (np.ndarray): shape (12, 3)
    """
    vertices = np.array([
        [-0.5, 0.5, 0.5],   [0.5, 0.5, 0.5],   [0.5, -0.5, 0.5],   [-0.5, -0.5, 0.5], # v0-v1-v2-v3
        [-0.5, 0.5, -0.5],  [0.5, 0.5, -0.5],  [0.5, -0.5, -0.5],  [-0.5, -0.5, -0.5] # v4-v5-v6-v7
    ], dtype=np.float32).reshape((-1, 3))

    faces = np.array([
        [0, 1, 2, 3], # v0-v1-v2-v3 (front)
        [4, 5, 1, 0], # v4-v5-v1-v0 (top)
        [3, 2, 6, 7], # v3-v2-v6-v7 (bottom)
        [5, 4, 7, 6], # v5-v4-v7-v6 (back)
        [1, 5, 6, 2], # v1-v5-v6-v2 (right)
        [4, 0, 3, 7]  # v4-v0-v3-v7 (left)
    ], dtype=np.int32)

    if tri:
        faces = mesh.triangulate(faces, vertices=vertices)

    return vertices, faces


def camera_frustum(extrinsics: np.ndarray, intrinsics: np.ndarray, depth: float = 1.0) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Get x triangle mesh of camera frustum.
    """
    assert extrinsics.shape == (4, 4) and intrinsics.shape == (3, 3)
    vertices = transforms.unproject_cv(
        np.array([[0, 0], [0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32), 
        np.array([0] + [depth] * 4, dtype=np.float32), 
        extrinsics, 
        intrinsics
    ).astype(np.float32)
    edges = np.array([
        [0, 1], [0, 2], [0, 3], [0, 4], 
        [1, 2], [2, 3], [3, 4], [4, 1]
    ], dtype=np.int32)
    faces = np.array([
        [0, 1, 2],
        [0, 2, 3],
        [0, 3, 4],
        [0, 4, 1],
        [1, 2, 3],
        [1, 3, 4]
    ], dtype=np.int32)
    return vertices, edges, faces