Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,556 Bytes
ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
from typing import *
from numbers import Number
from functools import partial
from pathlib import Path
import importlib
import warnings
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
import torch.utils.checkpoint
import torch.version
import utils3d
from huggingface_hub import hf_hub_download
from ..utils.geometry_torch import normalized_view_plane_uv, recover_focal_shift, gaussian_blur_2d
from .utils import wrap_dinov2_attention_with_sdpa, wrap_module_with_gradient_checkpointing, unwrap_module_with_gradient_checkpointing
from ..utils.tools import timeit
class ResidualConvBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int = None, hidden_channels: int = None, padding_mode: str = 'replicate', activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu', norm: Literal['group_norm', 'layer_norm'] = 'group_norm'):
super(ResidualConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
if hidden_channels is None:
hidden_channels = in_channels
if activation =='relu':
activation_cls = lambda: nn.ReLU(inplace=True)
elif activation == 'leaky_relu':
activation_cls = lambda: nn.LeakyReLU(negative_slope=0.2, inplace=True)
elif activation =='silu':
activation_cls = lambda: nn.SiLU(inplace=True)
elif activation == 'elu':
activation_cls = lambda: nn.ELU(inplace=True)
else:
raise ValueError(f'Unsupported activation function: {activation}')
self.layers = nn.Sequential(
nn.GroupNorm(1, in_channels),
activation_cls(),
nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1, padding_mode=padding_mode),
nn.GroupNorm(hidden_channels // 32 if norm == 'group_norm' else 1, hidden_channels),
activation_cls(),
nn.Conv2d(hidden_channels, out_channels, kernel_size=3, padding=1, padding_mode=padding_mode)
)
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if in_channels != out_channels else nn.Identity()
def forward(self, x):
skip = self.skip_connection(x)
x = self.layers(x)
x = x + skip
return x
class Head(nn.Module):
def __init__(
self,
num_features: int,
dim_in: int,
dim_out: List[int],
dim_proj: int = 512,
dim_upsample: List[int] = [256, 128, 128],
dim_times_res_block_hidden: int = 1,
num_res_blocks: int = 1,
res_block_norm: Literal['group_norm', 'layer_norm'] = 'group_norm',
last_res_blocks: int = 0,
last_conv_channels: int = 32,
last_conv_size: int = 1
):
super().__init__()
self.projects = nn.ModuleList([
nn.Conv2d(in_channels=dim_in, out_channels=dim_proj, kernel_size=1, stride=1, padding=0,) for _ in range(num_features)
])
self.upsample_blocks = nn.ModuleList([
nn.Sequential(
self._make_upsampler(in_ch + 2, out_ch),
*(ResidualConvBlock(out_ch, out_ch, dim_times_res_block_hidden * out_ch, activation="relu", norm=res_block_norm) for _ in range(num_res_blocks))
) for in_ch, out_ch in zip([dim_proj] + dim_upsample[:-1], dim_upsample)
])
self.output_block = nn.ModuleList([
self._make_output_block(
dim_upsample[-1] + 2, dim_out_, dim_times_res_block_hidden, last_res_blocks, last_conv_channels, last_conv_size, res_block_norm,
) for dim_out_ in dim_out
])
def _make_upsampler(self, in_channels: int, out_channels: int):
upsampler = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
)
upsampler[0].weight.data[:] = upsampler[0].weight.data[:, :, :1, :1]
return upsampler
def _make_output_block(self, dim_in: int, dim_out: int, dim_times_res_block_hidden: int, last_res_blocks: int, last_conv_channels: int, last_conv_size: int, res_block_norm: Literal['group_norm', 'layer_norm']):
return nn.Sequential(
nn.Conv2d(dim_in, last_conv_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
*(ResidualConvBlock(last_conv_channels, last_conv_channels, dim_times_res_block_hidden * last_conv_channels, activation='relu', norm=res_block_norm) for _ in range(last_res_blocks)),
nn.ReLU(inplace=True),
nn.Conv2d(last_conv_channels, dim_out, kernel_size=last_conv_size, stride=1, padding=last_conv_size // 2, padding_mode='replicate'),
)
def forward(self, hidden_states: torch.Tensor, image: torch.Tensor):
img_h, img_w = image.shape[-2:]
patch_h, patch_w = img_h // 14, img_w // 14
# Process the hidden states
x = torch.stack([
proj(feat.permute(0, 2, 1).unflatten(2, (patch_h, patch_w)).contiguous())
for proj, (feat, clstoken) in zip(self.projects, hidden_states)
], dim=1).sum(dim=1)
# Upsample stage
# (patch_h, patch_w) -> (patch_h * 2, patch_w * 2) -> (patch_h * 4, patch_w * 4) -> (patch_h * 8, patch_w * 8)
for i, block in enumerate(self.upsample_blocks):
# UV coordinates is for awareness of image aspect ratio
uv = normalized_view_plane_uv(width=x.shape[-1], height=x.shape[-2], aspect_ratio=img_w / img_h, dtype=x.dtype, device=x.device)
uv = uv.permute(2, 0, 1).unsqueeze(0).expand(x.shape[0], -1, -1, -1)
x = torch.cat([x, uv], dim=1)
for layer in block:
x = torch.utils.checkpoint.checkpoint(layer, x, use_reentrant=False)
# (patch_h * 8, patch_w * 8) -> (img_h, img_w)
x = F.interpolate(x, (img_h, img_w), mode="bilinear", align_corners=False)
uv = normalized_view_plane_uv(width=x.shape[-1], height=x.shape[-2], aspect_ratio=img_w / img_h, dtype=x.dtype, device=x.device)
uv = uv.permute(2, 0, 1).unsqueeze(0).expand(x.shape[0], -1, -1, -1)
x = torch.cat([x, uv], dim=1)
if isinstance(self.output_block, nn.ModuleList):
output = [torch.utils.checkpoint.checkpoint(block, x, use_reentrant=False) for block in self.output_block]
else:
output = torch.utils.checkpoint.checkpoint(self.output_block, x, use_reentrant=False)
return output
class MoGeModel(nn.Module):
image_mean: torch.Tensor
image_std: torch.Tensor
def __init__(self,
encoder: str = 'dinov2_vitb14',
intermediate_layers: Union[int, List[int]] = 4,
dim_proj: int = 512,
dim_upsample: List[int] = [256, 128, 128],
dim_times_res_block_hidden: int = 1,
num_res_blocks: int = 1,
output_mask: bool = False,
split_head: bool = False,
remap_output: Literal[False, True, 'linear', 'sinh', 'exp', 'sinh_exp'] = 'linear',
res_block_norm: Literal['group_norm', 'layer_norm'] = 'group_norm',
trained_diagonal_size_range: Tuple[Number, Number] = (600, 900),
trained_area_range: Tuple[Number, Number] = (500 * 500, 700 * 700),
last_res_blocks: int = 0,
last_conv_channels: int = 32,
last_conv_size: int = 1,
**deprecated_kwargs
):
super(MoGeModel, self).__init__()
if deprecated_kwargs:
warnings.warn(f"The following deprecated/invalid arguments are ignored: {deprecated_kwargs}")
self.encoder = encoder
self.remap_output = remap_output
self.intermediate_layers = intermediate_layers
self.trained_diagonal_size_range = trained_diagonal_size_range
self.trained_area_range = trained_area_range
self.output_mask = output_mask
self.split_head = split_head
# NOTE: We have copied the DINOv2 code in torchhub to this repository.
# Minimal modifications have been made: removing irrelevant code, unnecessary warnings and fixing importing issues.
hub_loader = getattr(importlib.import_module(".dinov2.hub.backbones", __package__), encoder)
self.backbone = hub_loader(pretrained=False)
dim_feature = self.backbone.blocks[0].attn.qkv.in_features
self.head = Head(
num_features=intermediate_layers if isinstance(intermediate_layers, int) else len(intermediate_layers),
dim_in=dim_feature,
dim_out=3 if not output_mask else 4 if output_mask and not split_head else [3, 1],
dim_proj=dim_proj,
dim_upsample=dim_upsample,
dim_times_res_block_hidden=dim_times_res_block_hidden,
num_res_blocks=num_res_blocks,
res_block_norm=res_block_norm,
last_res_blocks=last_res_blocks,
last_conv_channels=last_conv_channels,
last_conv_size=last_conv_size
)
image_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
image_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
self.register_buffer("image_mean", image_mean)
self.register_buffer("image_std", image_std)
if torch.__version__ >= '2.0':
self.enable_pytorch_native_sdpa()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, Path, IO[bytes]], model_kwargs: Optional[Dict[str, Any]] = None, **hf_kwargs) -> 'MoGeModel':
"""
Load a model from a checkpoint file.
### Parameters:
- `pretrained_model_name_or_path`: path to the checkpoint file or repo id.
- `model_kwargs`: additional keyword arguments to override the parameters in the checkpoint.
- `hf_kwargs`: additional keyword arguments to pass to the `hf_hub_download` function. Ignored if `pretrained_model_name_or_path` is a local path.
### Returns:
- A new instance of `MoGe` with the parameters loaded from the checkpoint.
"""
if Path(pretrained_model_name_or_path).exists():
checkpoint = torch.load(pretrained_model_name_or_path, map_location='cpu', weights_only=True)
else:
cached_checkpoint_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
repo_type="model",
filename="model.pt",
**hf_kwargs
)
checkpoint = torch.load(cached_checkpoint_path, map_location='cpu', weights_only=True)
model_config = checkpoint['model_config']
if model_kwargs is not None:
model_config.update(model_kwargs)
model = cls(**model_config)
model.load_state_dict(checkpoint['model'])
return model
@staticmethod
def cache_pretrained_backbone(encoder: str, pretrained: bool):
_ = torch.hub.load('facebookresearch/dinov2', encoder, pretrained=pretrained)
def load_pretrained_backbone(self):
"Load the backbone with pretrained dinov2 weights from torch hub"
state_dict = torch.hub.load('facebookresearch/dinov2', self.encoder, pretrained=True).state_dict()
self.backbone.load_state_dict(state_dict)
def enable_backbone_gradient_checkpointing(self):
for i in range(len(self.backbone.blocks)):
self.backbone.blocks[i] = wrap_module_with_gradient_checkpointing(self.backbone.blocks[i])
def enable_pytorch_native_sdpa(self):
for i in range(len(self.backbone.blocks)):
self.backbone.blocks[i].attn = wrap_dinov2_attention_with_sdpa(self.backbone.blocks[i].attn)
def forward(self, image: torch.Tensor, mixed_precision: bool = False) -> Dict[str, torch.Tensor]:
raw_img_h, raw_img_w = image.shape[-2:]
patch_h, patch_w = raw_img_h // 14, raw_img_w // 14
image = (image - self.image_mean) / self.image_std
# Apply image transformation for DINOv2
image_14 = F.interpolate(image, (patch_h * 14, patch_w * 14), mode="bilinear", align_corners=False, antialias=True)
# Get intermediate layers from the backbone
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=mixed_precision):
features = self.backbone.get_intermediate_layers(image_14, self.intermediate_layers, return_class_token=True)
# Predict points (and mask)
output = self.head(features, image)
if self.output_mask:
if self.split_head:
points, mask = output
else:
points, mask = output.split([3, 1], dim=1)
points, mask = points.permute(0, 2, 3, 1), mask.squeeze(1)
else:
points = output.permute(0, 2, 3, 1)
if self.remap_output == 'linear' or self.remap_output == False:
pass
elif self.remap_output =='sinh' or self.remap_output == True:
points = torch.sinh(points)
elif self.remap_output == 'exp':
xy, z = points.split([2, 1], dim=-1)
z = torch.exp(z)
points = torch.cat([xy * z, z], dim=-1)
elif self.remap_output =='sinh_exp':
xy, z = points.split([2, 1], dim=-1)
points = torch.cat([torch.sinh(xy), torch.exp(z)], dim=-1)
else:
raise ValueError(f"Invalid remap output type: {self.remap_output}")
return_dict = {'points': points}
if self.output_mask:
return_dict['mask'] = mask
return return_dict
@torch.inference_mode()
def infer(
self,
image: torch.Tensor,
force_projection: bool = True,
resolution_level: int = 9,
apply_mask: bool = True,
fov_x: Union[Number, torch.Tensor] = None
) -> Dict[str, torch.Tensor]:
"""
User-friendly inference function
### Parameters
- `image`: input image tensor of shape (B, 3, H, W) or (3, H, W)
- `resolution_level`: the resolution level to use for the output point map in 0-9. Default: 9 (highest)
- `force_projection`: if True, the output point map will be computed using the actual depth map. Default: True
- `apply_mask`: if True, the output point map will be masked using the predicted mask. Default: True
- `fov_x`: the horizontal camera FoV in degrees. If None, it will be inferred from the predicted point map. Default: None
### Returns
A dictionary containing the following keys:
- `points`: output tensor of shape (B, H, W, 3) or (H, W, 3).
- `depth`: tensor of shape (B, H, W) or (H, W) containing the depth map.
- `intrinsics`: tensor of shape (B, 3, 3) or (3, 3) containing the camera intrinsics.
"""
if image.dim() == 3:
omit_batch_dim = True
image = image.unsqueeze(0)
else:
omit_batch_dim = False
original_height, original_width = image.shape[-2:]
area = original_height * original_width
aspect_ratio = original_width / original_height
min_area, max_area = self.trained_area_range
expected_area = min_area + (max_area - min_area) * (resolution_level / 9)
if expected_area != area:
expected_width, expected_height = int(original_width * (expected_area / area) ** 0.5), int(original_height * (expected_area / area) ** 0.5)
image = F.interpolate(image, (expected_height, expected_width), mode="bicubic", align_corners=False, antialias=True)
output = self.forward(image)
points, mask = output['points'], output.get('mask', None)
# Get camera-space point map. (Focal here is the focal length relative to half the image diagonal)
if fov_x is None:
focal, shift = recover_focal_shift(points, None if mask is None else mask > 0.5)
else:
focal = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 / torch.tan(torch.deg2rad(torch.as_tensor(fov_x, device=points.device, dtype=points.dtype) / 2))
if focal.ndim == 0:
focal = focal[None].expand(points.shape[0])
_, shift = recover_focal_shift(points, None if mask is None else mask > 0.5, focal=focal)
fx = focal / 2 * (1 + aspect_ratio ** 2) ** 0.5 / aspect_ratio
fy = focal / 2 * (1 + aspect_ratio ** 2) ** 0.5
intrinsics = utils3d.torch.intrinsics_from_focal_center(fx, fy, 0.5, 0.5)
depth = points[..., 2] + shift[..., None, None]
# If projection constraint is forced, recompute the point map using the actual depth map
if force_projection:
points = utils3d.torch.unproject_cv(utils3d.torch.image_uv(width=expected_width, height=expected_height, dtype=points.dtype, device=points.device), depth, extrinsics=None, intrinsics=intrinsics[..., None, :, :])
else:
points = points + torch.stack([torch.zeros_like(shift), torch.zeros_like(shift), shift], dim=-1)[..., None, None, :]
# Resize the output to the original resolution
if expected_area != area:
points = F.interpolate(points.permute(0, 3, 1, 2), (original_height, original_width), mode='bilinear', align_corners=False, antialias=False).permute(0, 2, 3, 1)
depth = F.interpolate(depth.unsqueeze(1), (original_height, original_width), mode='bilinear', align_corners=False, antialias=False).squeeze(1)
mask = None if mask is None else F.interpolate(mask.unsqueeze(1), (original_height, original_width), mode='bilinear', align_corners=False, antialias=False).squeeze(1)
# Apply mask if needed
if self.output_mask and apply_mask:
mask_binary = (depth > 0) & (mask > 0.5)
points = torch.where(mask_binary[..., None], points, torch.inf)
depth = torch.where(mask_binary, depth, torch.inf)
if omit_batch_dim:
points = points.squeeze(0)
intrinsics = intrinsics.squeeze(0)
depth = depth.squeeze(0)
if self.output_mask:
mask = mask.squeeze(0)
return_dict = {
'points': points,
'intrinsics': intrinsics,
'depth': depth,
}
if self.output_mask:
return_dict['mask'] = mask > 0.5
return return_dict |