File size: 13,897 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from typing import *
import torch
import torch.nn.functional as F
from . import transforms
from . import mesh
from ._helpers import batched
__all__ = [
'sliding_window_1d',
'sliding_window_2d',
'sliding_window_nd',
'image_uv',
'image_pixel_center',
'image_mesh',
'chessboard',
'depth_edge',
'depth_aliasing',
'image_mesh_from_depth',
'point_to_normal',
'depth_to_normal',
'masked_min',
'masked_max',
'bounding_rect'
]
def sliding_window_1d(x: torch.Tensor, window_size: int, stride: int = 1, dim: int = -1) -> torch.Tensor:
"""
Sliding window view of the input tensor. The dimension of the sliding window is appended to the end of the input tensor's shape.
NOTE: Since Pytorch has `unfold` function, 1D sliding window view is just a wrapper of it.
"""
return x.unfold(dim, window_size, stride)
def sliding_window_nd(x: torch.Tensor, window_size: Tuple[int, ...], stride: Tuple[int, ...], dim: Tuple[int, ...]) -> torch.Tensor:
dim = [dim[i] % x.ndim for i in range(len(dim))]
assert len(window_size) == len(stride) == len(dim)
for i in range(len(window_size)):
x = sliding_window_1d(x, window_size[i], stride[i], dim[i])
return x
def sliding_window_2d(x: torch.Tensor, window_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], dim: Union[int, Tuple[int, int]] = (-2, -1)) -> torch.Tensor:
if isinstance(window_size, int):
window_size = (window_size, window_size)
if isinstance(stride, int):
stride = (stride, stride)
return sliding_window_nd(x, window_size, stride, dim)
def image_uv(height: int, width: int, left: int = None, top: int = None, right: int = None, bottom: int = None, device: torch.device = None, dtype: torch.dtype = None) -> torch.Tensor:
"""
Get image space UV grid, ranging in [0, 1].
>>> image_uv(10, 10):
[[[0.05, 0.05], [0.15, 0.05], ..., [0.95, 0.05]],
[[0.05, 0.15], [0.15, 0.15], ..., [0.95, 0.15]],
... ... ...
[[0.05, 0.95], [0.15, 0.95], ..., [0.95, 0.95]]]
Args:
width (int): image width
height (int): image height
Returns:
np.ndarray: shape (height, width, 2)
"""
if left is None: left = 0
if top is None: top = 0
if right is None: right = width
if bottom is None: bottom = height
u = torch.linspace((left + 0.5) / width, (right - 0.5) / width, right - left, device=device, dtype=dtype)
v = torch.linspace((top + 0.5) / height, (bottom - 0.5) / height, bottom - top, device=device, dtype=dtype)
u, v = torch.meshgrid(u, v, indexing='xy')
uv = torch.stack([u, v], dim=-1)
return uv
def image_pixel_center(
height: int,
width: int,
left: int = None,
top: int = None,
right: int = None,
bottom: int = None,
dtype: torch.dtype = None,
device: torch.device = None
) -> torch.Tensor:
"""
Get image pixel center coordinates, ranging in [0, width] and [0, height].
`image[i, j]` has pixel center coordinates `(j + 0.5, i + 0.5)`.
>>> image_pixel_center(10, 10):
[[[0.5, 0.5], [1.5, 0.5], ..., [9.5, 0.5]],
[[0.5, 1.5], [1.5, 1.5], ..., [9.5, 1.5]],
... ... ...
[[0.5, 9.5], [1.5, 9.5], ..., [9.5, 9.5]]]
Args:
width (int): image width
height (int): image height
Returns:
np.ndarray: shape (height, width, 2)
"""
if left is None: left = 0
if top is None: top = 0
if right is None: right = width
if bottom is None: bottom = height
u = torch.linspace(left + 0.5, right - 0.5, right - left, dtype=dtype, device=device)
v = torch.linspace(top + 0.5, bottom - 0.5, bottom - top, dtype=dtype, device=device)
u, v = torch.meshgrid(u, v, indexing='xy')
return torch.stack([u, v], dim=2)
def image_mesh(height: int, width: int, mask: torch.Tensor = None, device: torch.device = None, dtype: torch.dtype = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Get a quad mesh regarding image pixel uv coordinates as vertices and image grid as faces.
Args:
width (int): image width
height (int): image height
mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.
Returns:
uv (np.ndarray): uv corresponding to pixels as described in image_uv()
faces (np.ndarray): quad faces connecting neighboring pixels
indices (np.ndarray, optional): indices of vertices in the original mesh
"""
if device is None and mask is not None:
device = mask.device
if mask is not None:
assert mask.shape[0] == height and mask.shape[1] == width
assert mask.dtype == torch.bool
uv = image_uv(height, width, device=device, dtype=dtype).reshape((-1, 2))
row_faces = torch.stack([
torch.arange(0, width - 1, dtype=torch.int32, device=device),
torch.arange(width, 2 * width - 1, dtype=torch.int32, device=device),
torch.arange(1 + width, 2 * width, dtype=torch.int32, device=device),
torch.arange(1, width, dtype=torch.int32, device=device)
], dim=1)
faces = (torch.arange(0, (height - 1) * width, width, device=device, dtype=torch.int32)[:, None, None] + row_faces[None, :, :]).reshape((-1, 4))
if mask is not None:
quad_mask = (mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]).ravel()
faces = faces[quad_mask]
faces, uv, indices = mesh.remove_unreferenced_vertices(faces, uv, return_indices=True)
return uv, faces, indices
return uv, faces
def depth_edge(depth: torch.Tensor, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: torch.Tensor = None) -> torch.BoolTensor:
"""
Compute the edge mask of a depth map. The edge is defined as the pixels whose neighbors have a large difference in depth.
Args:
depth (torch.Tensor): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (torch.Tensor): shape (..., height, width) of dtype torch.bool
"""
shape = depth.shape
depth = depth.reshape(-1, 1, *shape[-2:])
if mask is not None:
mask = mask.reshape(-1, 1, *shape[-2:])
if mask is None:
diff = (F.max_pool2d(depth, kernel_size, stride=1, padding=kernel_size // 2) + F.max_pool2d(-depth, kernel_size, stride=1, padding=kernel_size // 2))
else:
diff = (F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2) + F.max_pool2d(torch.where(mask, -depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2))
edge = torch.zeros_like(depth, dtype=torch.bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= (diff / depth).nan_to_num_() > rtol
edge = edge.reshape(*shape)
return edge
def depth_aliasing(depth: torch.Tensor, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: torch.Tensor = None) -> torch.BoolTensor:
"""
Compute the map that indicates the aliasing of a depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
Args:
depth (torch.Tensor): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (torch.Tensor): shape (..., height, width) of dtype torch.bool
"""
shape = depth.shape
depth = depth.reshape(-1, 1, *shape[-2:])
if mask is not None:
mask = mask.reshape(-1, 1, *shape[-2:])
if mask is None:
diff_max = F.max_pool2d(depth, kernel_size, stride=1, padding=kernel_size // 2) - depth
diff_min = F.max_pool2d(-depth, kernel_size, stride=1, padding=kernel_size // 2) + depth
else:
diff_max = F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2) - depth
diff_min = F.max_pool2d(torch.where(mask, -depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2) + depth
diff = torch.minimum(diff_max, diff_min)
edge = torch.zeros_like(depth, dtype=torch.bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= (diff / depth).nan_to_num_() > rtol
edge = edge.reshape(*shape)
return edge
def image_mesh_from_depth(
depth: torch.Tensor,
extrinsics: torch.Tensor = None,
intrinsics: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
height, width = depth.shape
uv, faces = image_mesh(height, width)
faces = faces.reshape(-1, 4)
depth = depth.reshape(-1)
pts = transforms.unproject_cv(image_uv, depth, extrinsics, intrinsics)
faces = mesh.triangulate(faces, vertices=pts)
return pts, faces
@batched(3, 2, 2)
def point_to_normal(point: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
"""
Calculate normal map from point map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.
Args:
point (torch.Tensor): shape (..., height, width, 3), point map
Returns:
normal (torch.Tensor): shape (..., height, width, 3), normal map.
"""
has_mask = mask is not None
if mask is None:
mask = torch.ones_like(point[..., 0], dtype=torch.bool)
mask = F.pad(mask, (1, 1, 1, 1), mode='constant', value=0)
pts = F.pad(point.permute(0, 3, 1, 2), (1, 1, 1, 1), mode='constant', value=1).permute(0, 2, 3, 1)
up = pts[:, :-2, 1:-1, :] - pts[:, 1:-1, 1:-1, :]
left = pts[:, 1:-1, :-2, :] - pts[:, 1:-1, 1:-1, :]
down = pts[:, 2:, 1:-1, :] - pts[:, 1:-1, 1:-1, :]
right = pts[:, 1:-1, 2:, :] - pts[:, 1:-1, 1:-1, :]
normal = torch.stack([
torch.cross(up, left, dim=-1),
torch.cross(left, down, dim=-1),
torch.cross(down, right, dim=-1),
torch.cross(right, up, dim=-1),
])
normal = F.normalize(normal, dim=-1)
valid = torch.stack([
mask[:, :-2, 1:-1] & mask[:, 1:-1, :-2],
mask[:, 1:-1, :-2] & mask[:, 2:, 1:-1],
mask[:, 2:, 1:-1] & mask[:, 1:-1, 2:],
mask[:, 1:-1, 2:] & mask[:, :-2, 1:-1],
]) & mask[None, :, 1:-1, 1:-1]
normal = (normal * valid[..., None]).sum(dim=0)
normal = F.normalize(normal, dim=-1)
if has_mask:
return normal, valid.any(dim=0)
else:
return normal
@batched(2, 2, 2)
def depth_to_normal(depth: torch.Tensor, intrinsics: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
"""
Calculate normal map from depth map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.
Args:
depth (torch.Tensor): shape (..., height, width), linear depth map
intrinsics (torch.Tensor): shape (..., 3, 3), intrinsics matrix
Returns:
normal (torch.Tensor): shape (..., 3, height, width), normal map.
"""
has_mask = mask is not None
height, width = depth.shape[-2:]
if mask is None:
mask = torch.ones_like(depth, dtype=torch.bool)
mask = F.pad(mask, (1, 1, 1, 1), mode='constant', value=0)
uv = image_uv(*depth.shape[-2:]).unsqueeze(0).to(depth)
pts = transforms.unproject_cv(uv.reshape(-1, 2), depth.flatten(-2), intrinsics=intrinsics, extrinsics=None).unflatten(-2, (height, width))
return point_to_normal(pts, mask)
def masked_min(input: torch.Tensor, mask: torch.BoolTensor, dim: int = None, keepdim: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Similar to torch.min, but with mask
"""
if dim is None:
return torch.where(mask, input, torch.tensor(torch.inf, dtype=input.dtype, device=input.device)).min()
else:
return torch.where(mask, input, torch.tensor(torch.inf, dtype=input.dtype, device=input.device)).min(dim=dim, keepdim=keepdim)
def masked_max(input: torch.Tensor, mask: torch.BoolTensor, dim: int = None, keepdim: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Similar to torch.max, but with mask
"""
if dim is None:
return torch.where(mask, input, torch.tensor(-torch.inf, dtype=input.dtype, device=input.device)).max()
else:
return torch.where(mask, input, torch.tensor(-torch.inf, dtype=input.dtype, device=input.device)).max(dim=dim, keepdim=keepdim)
def bounding_rect(mask: torch.BoolTensor):
"""get bounding rectangle of a mask
Args:
mask (torch.Tensor): shape (..., height, width), mask
Returns:
rect (torch.Tensor): shape (..., 4), bounding rectangle (left, top, right, bottom)
"""
height, width = mask.shape[-2:]
mask = mask.flatten(-2).unsqueeze(-1)
uv = image_uv(height, width).to(mask.device).reshape(-1, 2)
left_top = masked_min(uv, mask, dim=-2)[0]
right_bottom = masked_max(uv, mask, dim=-2)[0]
return torch.cat([left_top, right_bottom], dim=-1)
def chessboard(width: int, height: int, grid_size: int, color_a: torch.Tensor, color_b: torch.Tensor) -> torch.Tensor:
"""get a chessboard image
Args:
width (int): image width
height (int): image height
grid_size (int): size of chessboard grid
color_a (torch.Tensor): shape (chanenls,), color of the grid at the top-left corner
color_b (torch.Tensor): shape (chanenls,), color in complementary grids
Returns:
image (torch.Tensor): shape (height, width, channels), chessboard image
"""
x = torch.div(torch.arange(width), grid_size, rounding_mode='floor')
y = torch.div(torch.arange(height), grid_size, rounding_mode='floor')
mask = ((x[None, :] + y[:, None]) % 2).to(color_a)
image = (1 - mask[..., None]) * color_a + mask[..., None] * color_b
return image |