File size: 23,943 Bytes
ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa c9d074f ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa 1cf86f0 ec0c8fa c9d074f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import numpy as np
from typing import *
from numbers import Number
import warnings
import functools
from ._helpers import batched
from . import transforms
from . import mesh
__all__ = [
'sliding_window_1d',
'sliding_window_nd',
'sliding_window_2d',
'max_pool_1d',
'max_pool_2d',
'max_pool_nd',
'depth_edge',
'normals_edge',
'depth_aliasing',
'interpolate',
'image_scrcoord',
'image_uv',
'image_pixel_center',
'image_pixel',
'image_mesh',
'image_mesh_from_depth',
'points_to_normals',
'points_to_normals',
'chessboard',
'cube',
'icosahedron',
'square',
'camera_frustum',
'to4x4'
]
def no_runtime_warnings(fn):
"""
Disable runtime warnings in numpy.
"""
@functools.wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return fn(*args, **kwargs)
return wrapper
def sliding_window_1d(x: np.ndarray, window_size: int, stride: int, axis: int = -1):
"""
Return x view of the input array with x sliding window of the given kernel size and stride.
The sliding window is performed over the given axis, and the window dimension is append to the end of the output array's shape.
Args:
x (np.ndarray): input array with shape (..., axis_size, ...)
kernel_size (int): size of the sliding window
stride (int): stride of the sliding window
axis (int): axis to perform sliding window over
Returns:
a_sliding (np.ndarray): view of the input array with shape (..., n_windows, ..., kernel_size), where n_windows = (axis_size - kernel_size + 1) // stride
"""
assert x.shape[axis] >= window_size, f"kernel_size ({window_size}) is larger than axis_size ({x.shape[axis]})"
axis = axis % x.ndim
shape = (*x.shape[:axis], (x.shape[axis] - window_size + 1) // stride, *x.shape[axis + 1:], window_size)
strides = (*x.strides[:axis], stride * x.strides[axis], *x.strides[axis + 1:], x.strides[axis])
x_sliding = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
return x_sliding
def sliding_window_nd(x: np.ndarray, window_size: Tuple[int,...], stride: Tuple[int,...], axis: Tuple[int,...]) -> np.ndarray:
axis = [axis[i] % x.ndim for i in range(len(axis))]
for i in range(len(axis)):
x = sliding_window_1d(x, window_size[i], stride[i], axis[i])
return x
def sliding_window_2d(x: np.ndarray, window_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)) -> np.ndarray:
if isinstance(window_size, int):
window_size = (window_size, window_size)
if isinstance(stride, int):
stride = (stride, stride)
return sliding_window_nd(x, window_size, stride, axis)
def max_pool_1d(x: np.ndarray, kernel_size: int, stride: int, padding: int = 0, axis: int = -1):
axis = axis % x.ndim
if padding > 0:
fill_value = np.nan if x.dtype.kind == 'f' else np.iinfo(x.dtype).min
padding_arr = np.full((*x.shape[:axis], padding, *x.shape[axis + 1:]), fill_value=fill_value, dtype=x.dtype)
x = np.concatenate([padding_arr, x, padding_arr], axis=axis)
a_sliding = sliding_window_1d(x, kernel_size, stride, axis)
max_pool = np.nanmax(a_sliding, axis=-1)
return max_pool
def max_pool_nd(x: np.ndarray, kernel_size: Tuple[int,...], stride: Tuple[int,...], padding: Tuple[int,...], axis: Tuple[int,...]) -> np.ndarray:
for i in range(len(axis)):
x = max_pool_1d(x, kernel_size[i], stride[i], padding[i], axis[i])
return x
def max_pool_2d(x: np.ndarray, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int]], axis: Tuple[int, int] = (-2, -1)):
if isinstance(kernel_size, Number):
kernel_size = (kernel_size, kernel_size)
if isinstance(stride, Number):
stride = (stride, stride)
if isinstance(padding, Number):
padding = (padding, padding)
axis = tuple(axis)
return max_pool_nd(x, kernel_size, stride, padding, axis)
@no_runtime_warnings
def depth_edge(depth: np.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: np.ndarray = None) -> np.ndarray:
"""
Compute the edge mask from depth map. The edge is defined as the pixels whose neighbors have large difference in depth.
Args:
depth (np.ndarray): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
if mask is None:
diff = (max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) + max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2))
else:
diff = (max_pool_2d(np.where(mask, depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) + max_pool_2d(np.where(mask, -depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2))
edge = np.zeros_like(depth, dtype=bool)
if atol is not None:
edge |= diff > atol
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
if rtol is not None:
edge |= diff / depth > rtol
return edge
@no_runtime_warnings
def depth_aliasing(depth: np.ndarray, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: np.ndarray = None) -> np.ndarray:
"""
Compute the map that indicates the aliasing of x depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
Args:
depth (np.ndarray): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
if mask is None:
diff_max = max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) - depth
diff_min = max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2) + depth
else:
diff_max = max_pool_2d(np.where(mask, depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) - depth
diff_min = max_pool_2d(np.where(mask, -depth, -np.inf), kernel_size, stride=1, padding=kernel_size // 2) + depth
diff = np.minimum(diff_max, diff_min)
edge = np.zeros_like(depth, dtype=bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= diff / depth > rtol
return edge
@no_runtime_warnings
def normals_edge(normals: np.ndarray, tol: float, kernel_size: int = 3, mask: np.ndarray = None) -> np.ndarray:
"""
Compute the edge mask from normal map.
Args:
normal (np.ndarray): shape (..., height, width, 3), normal map
tol (float): tolerance in degrees
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
assert normals.ndim >= 3 and normals.shape[-1] == 3, "normal should be of shape (..., height, width, 3)"
normals = normals / (np.linalg.norm(normals, axis=-1, keepdims=True) + 1e-12)
padding = kernel_size // 2
normals_window = sliding_window_2d(
np.pad(normals, (*([(0, 0)] * (normals.ndim - 3)), (padding, padding), (padding, padding), (0, 0)), mode='edge'),
window_size=kernel_size,
stride=1,
axis=(-3, -2)
)
if mask is None:
angle_diff = np.acos((normals[..., None, None] * normals_window).sum(axis=-3)).max(axis=(-2, -1))
else:
mask_window = sliding_window_2d(
np.pad(mask, (*([(0, 0)] * (mask.ndim - 3)), (padding, padding), (padding, padding)), mode='edge'),
window_size=kernel_size,
stride=1,
axis=(-3, -2)
)
angle_diff = np.where(mask_window, np.acos((normals[..., None, None] * normals_window).sum(axis=-3)), 0).max(axis=(-2, -1))
angle_diff = max_pool_2d(angle_diff, kernel_size, stride=1, padding=kernel_size // 2)
edge = angle_diff > np.deg2rad(tol)
return edge
@no_runtime_warnings
def points_to_normals(point: np.ndarray, mask: np.ndarray = None) -> np.ndarray:
"""
Calculate normal map from point map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.
Args:
point (np.ndarray): shape (height, width, 3), point map
Returns:
normal (np.ndarray): shape (height, width, 3), normal map.
"""
height, width = point.shape[-3:-1]
has_mask = mask is not None
if mask is None:
mask = np.ones_like(point[..., 0], dtype=bool)
mask_pad = np.zeros((height + 2, width + 2), dtype=bool)
mask_pad[1:-1, 1:-1] = mask
mask = mask_pad
pts = np.zeros((height + 2, width + 2, 3), dtype=point.dtype)
pts[1:-1, 1:-1, :] = point
up = pts[:-2, 1:-1, :] - pts[1:-1, 1:-1, :]
left = pts[1:-1, :-2, :] - pts[1:-1, 1:-1, :]
down = pts[2:, 1:-1, :] - pts[1:-1, 1:-1, :]
right = pts[1:-1, 2:, :] - pts[1:-1, 1:-1, :]
normal = np.stack([
np.cross(up, left, axis=-1),
np.cross(left, down, axis=-1),
np.cross(down, right, axis=-1),
np.cross(right, up, axis=-1),
])
normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
valid = np.stack([
mask[:-2, 1:-1] & mask[1:-1, :-2],
mask[1:-1, :-2] & mask[2:, 1:-1],
mask[2:, 1:-1] & mask[1:-1, 2:],
mask[1:-1, 2:] & mask[:-2, 1:-1],
]) & mask[None, 1:-1, 1:-1]
normal = (normal * valid[..., None]).sum(axis=0)
normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
if has_mask:
normal_mask = valid.any(axis=0)
normal = np.where(normal_mask[..., None], normal, 0)
return normal, normal_mask
else:
return normal
def depth_to_normals(depth: np.ndarray, intrinsics: np.ndarray, mask: np.ndarray = None) -> np.ndarray:
"""
Calculate normal map from depth map. Value range is [-1, 1]. Normal direction in OpenGL identity camera's coordinate system.
Args:
depth (np.ndarray): shape (height, width), linear depth map
intrinsics (np.ndarray): shape (3, 3), intrinsics matrix
Returns:
normal (np.ndarray): shape (height, width, 3), normal map.
"""
has_mask = mask is not None
height, width = depth.shape[-2:]
if mask is None:
mask = np.ones_like(depth, dtype=bool)
uv = image_uv(width=width, height=height, dtype=np.float32)
pts = transforms.unproject_cv(uv, depth, intrinsics=intrinsics, extrinsics=None)
return points_to_normals(pts, mask)
def interpolate(bary: np.ndarray, tri_id: np.ndarray, attr: np.ndarray, faces: np.ndarray) -> np.ndarray:
"""Interpolate with given barycentric coordinates and triangle indices
Args:
bary (np.ndarray): shape (..., 3), barycentric coordinates
tri_id (np.ndarray): int array of shape (...), triangle indices
attr (np.ndarray): shape (N, M), vertices attributes
faces (np.ndarray): int array of shape (T, 3), face vertex indices
Returns:
np.ndarray: shape (..., M) interpolated result
"""
faces_ = np.concatenate([np.zeros((1, 3), dtype=faces.dtype), faces + 1], axis=0)
attr_ = np.concatenate([np.zeros((1, attr.shape[1]), dtype=attr.dtype), attr], axis=0)
return np.sum(bary[..., None] * attr_[faces_[tri_id + 1]], axis=-2)
def image_scrcoord(
width: int,
height: int,
) -> np.ndarray:
"""
Get OpenGL's screen space coordinates, ranging in [0, 1].
[0, 0] is the bottom-left corner of the image.
Args:
width (int): image width
height (int): image height
Returns:
(np.ndarray): shape (height, width, 2)
"""
x, y = np.meshgrid(
np.linspace(0.5 / width, 1 - 0.5 / width, width, dtype=np.float32),
np.linspace(1 - 0.5 / height, 0.5 / height, height, dtype=np.float32),
indexing='xy'
)
return np.stack([x, y], axis=2)
def image_uv(
height: int,
width: int,
left: int = None,
top: int = None,
right: int = None,
bottom: int = None,
dtype: np.dtype = np.float32
) -> np.ndarray:
"""
Get image space UV grid, ranging in [0, 1].
>>> image_uv(10, 10):
[[[0.05, 0.05], [0.15, 0.05], ..., [0.95, 0.05]],
[[0.05, 0.15], [0.15, 0.15], ..., [0.95, 0.15]],
... ... ...
[[0.05, 0.95], [0.15, 0.95], ..., [0.95, 0.95]]]
Args:
width (int): image width
height (int): image height
Returns:
np.ndarray: shape (height, width, 2)
"""
if left is None: left = 0
if top is None: top = 0
if right is None: right = width
if bottom is None: bottom = height
u = np.linspace((left + 0.5) / width, (right - 0.5) / width, right - left, dtype=dtype)
v = np.linspace((top + 0.5) / height, (bottom - 0.5) / height, bottom - top, dtype=dtype)
u, v = np.meshgrid(u, v, indexing='xy')
return np.stack([u, v], axis=2)
def image_pixel_center(
height: int,
width: int,
left: int = None,
top: int = None,
right: int = None,
bottom: int = None,
dtype: np.dtype = np.float32
) -> np.ndarray:
"""
Get image pixel center coordinates, ranging in [0, width] and [0, height].
`image[i, j]` has pixel center coordinates `(j + 0.5, i + 0.5)`.
>>> image_pixel_center(10, 10):
[[[0.5, 0.5], [1.5, 0.5], ..., [9.5, 0.5]],
[[0.5, 1.5], [1.5, 1.5], ..., [9.5, 1.5]],
... ... ...
[[0.5, 9.5], [1.5, 9.5], ..., [9.5, 9.5]]]
Args:
width (int): image width
height (int): image height
Returns:
np.ndarray: shape (height, width, 2)
"""
if left is None: left = 0
if top is None: top = 0
if right is None: right = width
if bottom is None: bottom = height
u = np.linspace(left + 0.5, right - 0.5, right - left, dtype=dtype)
v = np.linspace(top + 0.5, bottom - 0.5, bottom - top, dtype=dtype)
u, v = np.meshgrid(u, v, indexing='xy')
return np.stack([u, v], axis=2)
def image_pixel(
height: int,
width: int,
left: int = None,
top: int = None,
right: int = None,
bottom: int = None,
dtype: np.dtype = np.int32
) -> np.ndarray:
"""
Get image pixel coordinates grid, ranging in [0, width - 1] and [0, height - 1].
`image[i, j]` has pixel center coordinates `(j, i)`.
>>> image_pixel_center(10, 10):
[[[0, 0], [1, 0], ..., [9, 0]],
[[0, 1.5], [1, 1], ..., [9, 1]],
... ... ...
[[0, 9.5], [1, 9], ..., [9, 9 ]]]
Args:
width (int): image width
height (int): image height
Returns:
np.ndarray: shape (height, width, 2)
"""
if left is None: left = 0
if top is None: top = 0
if right is None: right = width
if bottom is None: bottom = height
u = np.arange(left, right, dtype=dtype)
v = np.arange(top, bottom, dtype=dtype)
u, v = np.meshgrid(u, v, indexing='xy')
return np.stack([u, v], axis=2)
def image_mesh(
*image_attrs: np.ndarray,
mask: np.ndarray = None,
tri: bool = False,
return_indices: bool = False
) -> Tuple[np.ndarray, ...]:
"""
Get a mesh regarding image pixel uv coordinates as vertices and image grid as faces.
Args:
*image_attrs (np.ndarray): image attributes in shape (height, width, [channels])
mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.
Returns:
faces (np.ndarray): faces connecting neighboring pixels. shape (T, 4) if tri is False, else (T, 3)
*vertex_attrs (np.ndarray): vertex attributes in corresponding order with input image_attrs
indices (np.ndarray, optional): indices of vertices in the original mesh
"""
assert (len(image_attrs) > 0) or (mask is not None), "At least one of image_attrs or mask should be provided"
height, width = next(image_attrs).shape[:2] if mask is None else mask.shape
assert all(img.shape[:2] == (height, width) for img in image_attrs), "All image_attrs should have the same shape"
row_faces = np.stack([np.arange(0, width - 1, dtype=np.int32), np.arange(width, 2 * width - 1, dtype=np.int32), np.arange(1 + width, 2 * width, dtype=np.int32), np.arange(1, width, dtype=np.int32)], axis=1)
faces = (np.arange(0, (height - 1) * width, width, dtype=np.int32)[:, None, None] + row_faces[None, :, :]).reshape((-1, 4))
if mask is None:
if tri:
faces = mesh.triangulate(faces)
ret = [faces, *(img.reshape(-1, *img.shape[2:]) for img in image_attrs)]
if return_indices:
ret.append(np.arange(height * width, dtype=np.int32))
return tuple(ret)
else:
quad_mask = (mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]).ravel()
faces = faces[quad_mask]
if tri:
faces = mesh.triangulate(faces)
return mesh.remove_unreferenced_vertices(
faces,
*(x.reshape(-1, *x.shape[2:]) for x in image_attrs),
return_indices=return_indices
)
def image_mesh_from_depth(
depth: np.ndarray,
extrinsics: np.ndarray = None,
intrinsics: np.ndarray = None,
*vertice_attrs: np.ndarray,
atol: float = None,
rtol: float = None,
remove_by_depth: bool = False,
return_uv: bool = False,
return_indices: bool = False
) -> Tuple[np.ndarray, ...]:
"""
Get x triangle mesh by lifting depth map to 3D.
Args:
depth (np.ndarray): [H, W] depth map
extrinsics (np.ndarray, optional): [4, 4] extrinsics matrix. Defaults to None.
intrinsics (np.ndarray, optional): [3, 3] intrinsics matrix. Defaults to None.
*vertice_attrs (np.ndarray): [H, W, C] vertex attributes. Defaults to None.
atol (float, optional): absolute tolerance. Defaults to None.
rtol (float, optional): relative tolerance. Defaults to None.
triangles with vertices having depth difference larger than atol + rtol * depth will be marked.
remove_by_depth (bool, optional): whether to remove triangles with large depth difference. Defaults to True.
return_uv (bool, optional): whether to return uv coordinates. Defaults to False.
return_indices (bool, optional): whether to return indices of vertices in the original mesh. Defaults to False.
Returns:
vertices (np.ndarray): [N, 3] vertices
faces (np.ndarray): [T, 3] faces
*vertice_attrs (np.ndarray): [N, C] vertex attributes
image_uv (np.ndarray, optional): [N, 2] uv coordinates
ref_indices (np.ndarray, optional): [N] indices of vertices in the original mesh
"""
height, width = depth.shape
image_uv, image_face = image_mesh(height, width)
depth = depth.reshape(-1)
pts = transforms.unproject_cv(image_uv, depth, extrinsics, intrinsics)
image_face = mesh.triangulate(image_face, vertices=pts)
ref_indices = None
ret = []
if atol is not None or rtol is not None:
atol = 0 if atol is None else atol
rtol = 0 if rtol is None else rtol
mean = depth[image_face].mean(axis=1)
diff = np.max(np.abs(depth[image_face] - depth[image_face[:, [1, 2, 0]]]), axis=1)
mask = (diff <= atol + rtol * mean)
image_face_ = image_face[mask]
image_face_, ref_indices = mesh.remove_unreferenced_vertices(image_face_, return_indices=True)
remove = remove_by_depth and ref_indices is not None
if remove:
pts = pts[ref_indices]
image_face = image_face_
ret += [pts, image_face]
for attr in vertice_attrs:
ret.append(attr.reshape(-1, attr.shape[-1]) if not remove else attr.reshape(-1, attr.shape[-1])[ref_indices])
if return_uv:
ret.append(image_uv if not remove else image_uv[ref_indices])
if return_indices and ref_indices is not None:
ret.append(ref_indices)
return tuple(ret)
def chessboard(width: int, height: int, grid_size: int, color_a: np.ndarray, color_b: np.ndarray) -> np.ndarray:
"""get x chessboard image
Args:
width (int): image width
height (int): image height
grid_size (int): size of chessboard grid
color_a (np.ndarray): color of the grid at the top-left corner
color_b (np.ndarray): color in complementary grid cells
Returns:
image (np.ndarray): shape (height, width, channels), chessboard image
"""
x = np.arange(width) // grid_size
y = np.arange(height) // grid_size
mask = (x[None, :] + y[:, None]) % 2
image = (1 - mask[..., None]) * color_a + mask[..., None] * color_b
return image
def square(tri: bool = False) -> Tuple[np.ndarray, np.ndarray]:
"""
Get a square mesh of area 1 centered at origin in the xy-plane.
### Returns
vertices (np.ndarray): shape (4, 3)
faces (np.ndarray): shape (1, 4)
"""
vertices = np.array([
[-0.5, 0.5, 0], [0.5, 0.5, 0], [0.5, -0.5, 0], [-0.5, -0.5, 0] # v0-v1-v2-v3
], dtype=np.float32)
if tri:
faces = np.array([[0, 1, 2], [0, 2, 3]], dtype=np.int32)
else:
faces = np.array([[0, 1, 2, 3]], dtype=np.int32)
return vertices, faces
def cube(tri: bool = False) -> Tuple[np.ndarray, np.ndarray]:
"""
Get x cube mesh of size 1 centered at origin.
### Parameters
tri (bool, optional): return triangulated mesh. Defaults to False, which returns quad mesh.
### Returns
vertices (np.ndarray): shape (8, 3)
faces (np.ndarray): shape (12, 3)
"""
vertices = np.array([
[-0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [-0.5, -0.5, 0.5], # v0-v1-v2-v3
[-0.5, 0.5, -0.5], [0.5, 0.5, -0.5], [0.5, -0.5, -0.5], [-0.5, -0.5, -0.5] # v4-v5-v6-v7
], dtype=np.float32).reshape((-1, 3))
faces = np.array([
[0, 1, 2, 3], # v0-v1-v2-v3 (front)
[4, 5, 1, 0], # v4-v5-v1-v0 (top)
[3, 2, 6, 7], # v3-v2-v6-v7 (bottom)
[5, 4, 7, 6], # v5-v4-v7-v6 (back)
[1, 5, 6, 2], # v1-v5-v6-v2 (right)
[4, 0, 3, 7] # v4-v0-v3-v7 (left)
], dtype=np.int32)
if tri:
faces = mesh.triangulate(faces, vertices=vertices)
return vertices, faces
def camera_frustum(extrinsics: np.ndarray, intrinsics: np.ndarray, depth: float = 1.0) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Get x triangle mesh of camera frustum.
"""
assert extrinsics.shape == (4, 4) and intrinsics.shape == (3, 3)
vertices = transforms.unproject_cv(
np.array([[0, 0], [0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32),
np.array([0] + [depth] * 4, dtype=np.float32),
extrinsics,
intrinsics
).astype(np.float32)
edges = np.array([
[0, 1], [0, 2], [0, 3], [0, 4],
[1, 2], [2, 3], [3, 4], [4, 1]
], dtype=np.int32)
faces = np.array([
[0, 1, 2],
[0, 2, 3],
[0, 3, 4],
[0, 4, 1],
[1, 2, 3],
[1, 3, 4]
], dtype=np.int32)
return vertices, edges, faces
def icosahedron():
A = (1 + 5 ** 0.5) / 2
vertices = np.array([
[0, 1, A], [0, -1, A], [0, 1, -A], [0, -1, -A],
[1, A, 0], [-1, A, 0], [1, -A, 0], [-1, -A, 0],
[A, 0, 1], [A, 0, -1], [-A, 0, 1], [-A, 0, -1]
], dtype=np.float32)
faces = np.array([
[0, 1, 8], [0, 8, 4], [0, 4, 5], [0, 5, 10], [0, 10, 1],
[3, 2, 9], [3, 9, 6], [3, 6, 7], [3, 7, 11], [3, 11, 2],
[1, 6, 8], [8, 9, 4], [4, 2, 5], [5, 11, 10], [10, 7, 1],
[2, 4, 9], [9, 8, 6], [6, 1, 7], [7, 10, 11], [11, 5, 2]
], dtype=np.int32)
return vertices, faces |