Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
from typing import * | |
from ._helpers import batched | |
__all__ = [ | |
'triangulate', | |
'compute_face_normal', | |
'compute_face_angle', | |
'compute_vertex_normal', | |
'compute_vertex_normal_weighted', | |
'remove_corrupted_faces', | |
'merge_duplicate_vertices', | |
'remove_unreferenced_vertices', | |
'subdivide_mesh_simple', | |
'mesh_relations', | |
'flatten_mesh_indices' | |
] | |
def triangulate( | |
faces: np.ndarray, | |
vertices: np.ndarray = None, | |
backslash: np.ndarray = None | |
) -> np.ndarray: | |
""" | |
Triangulate a polygonal mesh. | |
Args: | |
faces (np.ndarray): [L, P] polygonal faces | |
vertices (np.ndarray, optional): [N, 3] 3-dimensional vertices. | |
If given, the triangulation is performed according to the distance | |
between vertices. Defaults to None. | |
backslash (np.ndarray, optional): [L] boolean array indicating | |
how to triangulate the quad faces. Defaults to None. | |
Returns: | |
(np.ndarray): [L * (P - 2), 3] triangular faces | |
""" | |
if faces.shape[-1] == 3: | |
return faces | |
P = faces.shape[-1] | |
if vertices is not None: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
if backslash is None: | |
backslash = np.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 2]], axis=-1) < \ | |
np.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 3]], axis=-1) | |
if backslash is None: | |
loop_indice = np.stack([ | |
np.zeros(P - 2, dtype=int), | |
np.arange(1, P - 1, 1, dtype=int), | |
np.arange(2, P, 1, dtype=int) | |
], axis=1) | |
return faces[:, loop_indice].reshape((-1, 3)) | |
else: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
faces = np.where( | |
backslash[:, None], | |
faces[:, [0, 1, 2, 0, 2, 3]], | |
faces[:, [0, 1, 3, 3, 1, 2]] | |
).reshape((-1, 3)) | |
return faces | |
def compute_face_normal( | |
vertices: np.ndarray, | |
faces: np.ndarray | |
) -> np.ndarray: | |
""" | |
Compute face normals of a triangular mesh | |
Args: | |
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
Returns: | |
normals (np.ndarray): [..., T, 3] face normals | |
""" | |
normal = np.cross( | |
vertices[..., faces[:, 1], :] - vertices[..., faces[:, 0], :], | |
vertices[..., faces[:, 2], :] - vertices[..., faces[:, 0], :] | |
) | |
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True) | |
normal_norm[normal_norm == 0] = 1 | |
normal /= normal_norm | |
return normal | |
def compute_face_angle( | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
eps: float = 1e-12 | |
) -> np.ndarray: | |
""" | |
Compute face angles of a triangular mesh | |
Args: | |
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
Returns: | |
angles (np.ndarray): [..., T, 3] face angles | |
""" | |
face_angle = np.zeros_like(faces, dtype=vertices.dtype) | |
for i in range(3): | |
edge1 = vertices[..., faces[:, (i + 1) % 3], :] - vertices[..., faces[:, i], :] | |
edge2 = vertices[..., faces[:, (i + 2) % 3], :] - vertices[..., faces[:, i], :] | |
face_angle[..., i] = np.arccos(np.sum( | |
edge1 / np.clip(np.linalg.norm(edge1, axis=-1, keepdims=True), eps, None) * | |
edge2 / np.clip(np.linalg.norm(edge2, axis=-1, keepdims=True), eps, None), | |
axis=-1 | |
)) | |
return face_angle | |
def compute_vertex_normal( | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
face_normal: np.ndarray = None | |
) -> np.ndarray: | |
""" | |
Compute vertex normals of a triangular mesh by averaging neightboring face normals | |
TODO: can be improved. | |
Args: | |
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
face_normal (np.ndarray, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (np.ndarray): [..., N, 3] vertex normals | |
""" | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
vertex_normal = np.zeros_like(vertices, dtype=vertices.dtype) | |
for n in range(vertices.shape[0]): | |
for i in range(3): | |
vertex_normal[n, :, 0] += np.bincount(faces[:, i], weights=face_normal[n, :, 0], minlength=vertices.shape[1]) | |
vertex_normal[n, :, 1] += np.bincount(faces[:, i], weights=face_normal[n, :, 1], minlength=vertices.shape[1]) | |
vertex_normal[n, :, 2] += np.bincount(faces[:, i], weights=face_normal[n, :, 2], minlength=vertices.shape[1]) | |
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True) | |
vertex_normal_norm[vertex_normal_norm == 0] = 1 | |
vertex_normal /= vertex_normal_norm | |
return vertex_normal | |
def compute_vertex_normal_weighted( | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
face_normal: np.ndarray = None | |
) -> np.ndarray: | |
""" | |
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals | |
according to the angles | |
Args: | |
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices | |
faces (np.ndarray): [..., T, 3] triangular face indices | |
face_normal (np.ndarray, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (np.ndarray): [..., N, 3] vertex normals | |
""" | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
face_angle = compute_face_angle(vertices, faces) | |
vertex_normal = np.zeros_like(vertices) | |
for n in range(vertices.shape[0]): | |
for i in range(3): | |
vertex_normal[n, :, 0] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 0] * face_angle[n, :, i], minlength=vertices.shape[1]) | |
vertex_normal[n, :, 1] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 1] * face_angle[n, :, i], minlength=vertices.shape[1]) | |
vertex_normal[n, :, 2] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 2] * face_angle[n, :, i], minlength=vertices.shape[1]) | |
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True) | |
vertex_normal_norm[vertex_normal_norm == 0] = 1 | |
vertex_normal /= vertex_normal_norm | |
return vertex_normal | |
def remove_corrupted_faces( | |
faces: np.ndarray | |
) -> np.ndarray: | |
""" | |
Remove corrupted faces (faces with duplicated vertices) | |
Args: | |
faces (np.ndarray): [T, 3] triangular face indices | |
Returns: | |
np.ndarray: [T_, 3] triangular face indices | |
""" | |
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0]) | |
return faces[~corrupted] | |
def merge_duplicate_vertices( | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
tol: float = 1e-6 | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Merge duplicate vertices of a triangular mesh. | |
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly. | |
Args: | |
vertices (np.ndarray): [N, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
tol (float, optional): tolerance for merging. Defaults to 1e-6. | |
Returns: | |
vertices (np.ndarray): [N_, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
""" | |
vertices_round = np.round(vertices / tol) | |
_, uni_i, uni_inv = np.unique(vertices_round, return_index=True, return_inverse=True, axis=0) | |
vertices = vertices[uni_i] | |
faces = uni_inv[faces] | |
return vertices, faces | |
def remove_unreferenced_vertices( | |
faces: np.ndarray, | |
*vertice_attrs, | |
return_indices: bool = False | |
) -> Tuple[np.ndarray, ...]: | |
""" | |
Remove unreferenced vertices of a mesh. | |
Unreferenced vertices are removed, and the face indices are updated accordingly. | |
Args: | |
faces (np.ndarray): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
Returns: | |
faces (np.ndarray): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
indices (np.ndarray, optional): [N] indices of vertices that are kept. Defaults to None. | |
""" | |
P = faces.shape[-1] | |
fewer_indices, inv_map = np.unique(faces, return_inverse=True) | |
faces = inv_map.astype(np.int32).reshape(-1, P) | |
ret = [faces] | |
for attr in vertice_attrs: | |
ret.append(attr[fewer_indices]) | |
if return_indices: | |
ret.append(fewer_indices) | |
return tuple(ret) | |
def subdivide_mesh_simple( | |
vertices: np.ndarray, | |
faces: np.ndarray, | |
n: int = 1 | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles. | |
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list. | |
Args: | |
vertices (np.ndarray): [N, 3] 3-dimensional vertices | |
faces (np.ndarray): [T, 3] triangular face indices | |
n (int, optional): number of subdivisions. Defaults to 1. | |
Returns: | |
vertices (np.ndarray): [N_, 3] subdivided 3-dimensional vertices | |
faces (np.ndarray): [4 * T, 3] subdivided triangular face indices | |
""" | |
for _ in range(n): | |
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=0) | |
edges = np.sort(edges, axis=2) | |
uni_edges, uni_inv = np.unique(edges.reshape(-1, 2), return_inverse=True, axis=0) | |
uni_inv = uni_inv.reshape(3, -1) | |
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2 | |
n_vertices = vertices.shape[0] | |
vertices = np.concatenate([vertices, midpoints], axis=0) | |
faces = np.concatenate([ | |
np.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1), | |
np.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1), | |
np.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1), | |
np.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1), | |
], axis=0) | |
return vertices, faces | |
def mesh_relations( | |
faces: np.ndarray, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Calculate the relation between vertices and faces. | |
NOTE: The input mesh must be a manifold triangle mesh. | |
Args: | |
faces (np.ndarray): [T, 3] triangular face indices | |
Returns: | |
edges (np.ndarray): [E, 2] edge indices | |
edge2face (np.ndarray): [E, 2] edge to face relation. The second column is -1 if the edge is boundary. | |
face2edge (np.ndarray): [T, 3] face to edge relation | |
face2face (np.ndarray): [T, 3] face to face relation | |
""" | |
T = faces.shape[0] | |
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=1).reshape(-1, 2) # [3T, 2] | |
edges = np.sort(edges, axis=1) # [3T, 2] | |
edges, face2edge, occurence = np.unique(edges, axis=0, return_inverse=True, return_counts=True) # [E, 2], [3T], [E] | |
E = edges.shape[0] | |
assert np.all(occurence <= 2), "The input mesh is not a manifold mesh." | |
# Edge to face relation | |
padding = np.arange(E, dtype=np.int32)[occurence == 1] | |
padded_face2edge = np.concatenate([face2edge, padding], axis=0) # [2E] | |
edge2face = np.argsort(padded_face2edge, kind='stable').reshape(-1, 2) // 3 # [E, 2] | |
edge2face_valid = edge2face[:, 1] < T # [E] | |
edge2face[~edge2face_valid, 1] = -1 | |
# Face to edge relation | |
face2edge = face2edge.reshape(-1, 3) # [T, 3] | |
# Face to face relation | |
face2face = edge2face[face2edge] # [T, 3, 2] | |
face2face = face2face[face2face != np.arange(T)[:, None, None]].reshape(T, 3) # [T, 3] | |
return edges, edge2face, face2edge, face2face | |
def flatten_mesh_indices(faces1: np.ndarray, attr1: np.ndarray, *other_faces_attrs_pairs: np.ndarray) -> Tuple[np.ndarray, ...]: | |
""" | |
Rearrange the indices of a mesh to a flattened version. Vertices will be no longer shared. | |
### Parameters: | |
- `faces1`: [T, P] face indices of the first attribute | |
- `attr1`: [N1, ...] attributes of the first mesh | |
- ... | |
### Returns: | |
- `faces`: [T, P] flattened face indices, contigous from 0 to T * P - 1 | |
- `attr1`: [T * P, ...] attributes of the first mesh, where every P values correspond to a face | |
_ ... | |
""" | |
def flatten_mesh_indices(*args: np.ndarray) -> Tuple[np.ndarray, ...]: | |
assert len(args) % 2 == 0, "The number of arguments must be even." | |
T, P = args[0].shape | |
assert all(arg.shape[0] == T and arg.shape[1] == P for arg in args[::2]), "The faces must have the same shape." | |
attr_flat = [] | |
for faces_, attr_ in zip(args[::2], args[1::2]): | |
attr_flat_ = attr_[faces_].reshape(-1, *attr_.shape[1:]) | |
attr_flat.append(attr_flat_) | |
faces_flat = np.arange(T * P, dtype=np.int32).reshape(T, P) | |
return faces_flat, *attr_flat |