Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
from typing import * | |
from numbers import Number | |
from ._helpers import batched | |
__all__ = [ | |
'perspective', | |
'perspective_from_fov', | |
'perspective_from_fov_xy', | |
'intrinsics_from_focal_center', | |
'intrinsics_from_fov', | |
'fov_to_focal', | |
'focal_to_fov', | |
'intrinsics_to_fov', | |
'view_look_at', | |
'extrinsics_look_at', | |
'perspective_to_intrinsics', | |
'perspective_to_near_far', | |
'intrinsics_to_perspective', | |
'extrinsics_to_view', | |
'view_to_extrinsics', | |
'normalize_intrinsics', | |
'crop_intrinsics', | |
'pixel_to_uv', | |
'pixel_to_ndc', | |
'uv_to_pixel', | |
'project_depth', | |
'depth_buffer_to_linear', | |
'unproject_cv', | |
'unproject_gl', | |
'project_cv', | |
'project_gl', | |
'quaternion_to_matrix', | |
'axis_angle_to_matrix', | |
'matrix_to_quaternion', | |
'extrinsics_to_essential', | |
'euler_axis_angle_rotation', | |
'euler_angles_to_matrix', | |
'skew_symmetric', | |
'rotation_matrix_from_vectors', | |
'ray_intersection', | |
'se3_matrix', | |
'slerp_quaternion', | |
'slerp_vector', | |
'lerp', | |
'lerp_se3_matrix', | |
'piecewise_lerp', | |
'piecewise_lerp_se3_matrix', | |
'apply_transform' | |
] | |
def perspective( | |
fov_y: Union[float, np.ndarray], | |
aspect: Union[float, np.ndarray], | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Get OpenGL perspective matrix | |
Args: | |
fov_y (float | np.ndarray): field of view in y axis | |
aspect (float | np.ndarray): aspect ratio | |
near (float | np.ndarray): near plane to clip | |
far (float | np.ndarray): far plane to clip | |
Returns: | |
(np.ndarray): [..., 4, 4] perspective matrix | |
""" | |
N = fov_y.shape[0] | |
ret = np.zeros((N, 4, 4), dtype=fov_y.dtype) | |
ret[:, 0, 0] = 1. / (np.tan(fov_y / 2) * aspect) | |
ret[:, 1, 1] = 1. / (np.tan(fov_y / 2)) | |
ret[:, 2, 2] = (near + far) / (near - far) | |
ret[:, 2, 3] = 2. * near * far / (near - far) | |
ret[:, 3, 2] = -1. | |
return ret | |
def perspective_from_fov( | |
fov: Union[float, np.ndarray], | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray], | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Get OpenGL perspective matrix from field of view in largest dimension | |
Args: | |
fov (float | np.ndarray): field of view in largest dimension | |
width (int | np.ndarray): image width | |
height (int | np.ndarray): image height | |
near (float | np.ndarray): near plane to clip | |
far (float | np.ndarray): far plane to clip | |
Returns: | |
(np.ndarray): [..., 4, 4] perspective matrix | |
""" | |
fov_y = 2 * np.arctan(np.tan(fov / 2) * height / np.maximum(width, height)) | |
aspect = width / height | |
return perspective(fov_y, aspect, near, far) | |
def perspective_from_fov_xy( | |
fov_x: Union[float, np.ndarray], | |
fov_y: Union[float, np.ndarray], | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Get OpenGL perspective matrix from field of view in x and y axis | |
Args: | |
fov_x (float | np.ndarray): field of view in x axis | |
fov_y (float | np.ndarray): field of view in y axis | |
near (float | np.ndarray): near plane to clip | |
far (float | np.ndarray): far plane to clip | |
Returns: | |
(np.ndarray): [..., 4, 4] perspective matrix | |
""" | |
aspect = np.tan(fov_x / 2) / np.tan(fov_y / 2) | |
return perspective(fov_y, aspect, near, far) | |
def intrinsics_from_focal_center( | |
fx: Union[float, np.ndarray], | |
fy: Union[float, np.ndarray], | |
cx: Union[float, np.ndarray], | |
cy: Union[float, np.ndarray], | |
dtype: Optional[np.dtype] = np.float32 | |
) -> np.ndarray: | |
""" | |
Get OpenCV intrinsics matrix | |
Returns: | |
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
""" | |
if any(isinstance(x, np.ndarray) for x in (fx, fy, cx, cy)): | |
dtype = np.result_type(fx, fy, cx, cy) | |
fx, fy, cx, cy = np.broadcast_arrays(fx, fy, cx, cy) | |
ret = np.zeros((*fx.shape, 3, 3), dtype=dtype) | |
ret[..., 0, 0] = fx | |
ret[..., 1, 1] = fy | |
ret[..., 0, 2] = cx | |
ret[..., 1, 2] = cy | |
ret[..., 2, 2] = 1. | |
return ret | |
def intrinsics_from_fov( | |
fov_max: Union[float, np.ndarray] = None, | |
fov_min: Union[float, np.ndarray] = None, | |
fov_x: Union[float, np.ndarray] = None, | |
fov_y: Union[float, np.ndarray] = None, | |
width: Union[int, np.ndarray] = None, | |
height: Union[int, np.ndarray] = None, | |
) -> np.ndarray: | |
""" | |
Get normalized OpenCV intrinsics matrix from given field of view. | |
You can provide either fov_max, fov_min, fov_x or fov_y | |
Args: | |
width (int | np.ndarray): image width | |
height (int | np.ndarray): image height | |
fov_max (float | np.ndarray): field of view in largest dimension | |
fov_min (float | np.ndarray): field of view in smallest dimension | |
fov_x (float | np.ndarray): field of view in x axis | |
fov_y (float | np.ndarray): field of view in y axis | |
Returns: | |
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
""" | |
if fov_max is not None: | |
fx = np.maximum(width, height) / width / (2 * np.tan(fov_max / 2)) | |
fy = np.maximum(width, height) / height / (2 * np.tan(fov_max / 2)) | |
elif fov_min is not None: | |
fx = np.minimum(width, height) / width / (2 * np.tan(fov_min / 2)) | |
fy = np.minimum(width, height) / height / (2 * np.tan(fov_min / 2)) | |
elif fov_x is not None and fov_y is not None: | |
fx = 1 / (2 * np.tan(fov_x / 2)) | |
fy = 1 / (2 * np.tan(fov_y / 2)) | |
elif fov_x is not None: | |
fx = 1 / (2 * np.tan(fov_x / 2)) | |
fy = fx * width / height | |
elif fov_y is not None: | |
fy = 1 / (2 * np.tan(fov_y / 2)) | |
fx = fy * height / width | |
cx = 0.5 | |
cy = 0.5 | |
ret = intrinsics_from_focal_center(fx, fy, cx, cy) | |
return ret | |
def focal_to_fov(focal: np.ndarray): | |
return 2 * np.arctan(0.5 / focal) | |
def fov_to_focal(fov: np.ndarray): | |
return 0.5 / np.tan(fov / 2) | |
def intrinsics_to_fov(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
fov_x = focal_to_fov(intrinsics[..., 0, 0]) | |
fov_y = focal_to_fov(intrinsics[..., 1, 1]) | |
return fov_x, fov_y | |
def view_look_at( | |
eye: np.ndarray, | |
look_at: np.ndarray, | |
up: np.ndarray | |
) -> np.ndarray: | |
""" | |
Get OpenGL view matrix looking at something | |
Args: | |
eye (np.ndarray): [..., 3] the eye position | |
look_at (np.ndarray): [..., 3] the position to look at | |
up (np.ndarray): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction | |
Returns: | |
(np.ndarray): [..., 4, 4], view matrix | |
""" | |
z = eye - look_at | |
x = np.cross(up, z) | |
y = np.cross(z, x) | |
# x = np.cross(y, z) | |
x = x / np.linalg.norm(x, axis=-1, keepdims=True) | |
y = y / np.linalg.norm(y, axis=-1, keepdims=True) | |
z = z / np.linalg.norm(z, axis=-1, keepdims=True) | |
R = np.stack([x, y, z], axis=-2) | |
t = -np.matmul(R, eye[..., None]) | |
return np.concatenate([ | |
np.concatenate([R, t], axis=-1), | |
np.array([[[0., 0., 0., 1.]]]).repeat(eye.shape[0], axis=0) | |
], axis=-2) | |
def extrinsics_look_at( | |
eye: np.ndarray, | |
look_at: np.ndarray, | |
up: np.ndarray | |
) -> np.ndarray: | |
""" | |
Get OpenCV extrinsics matrix looking at something | |
Args: | |
eye (np.ndarray): [..., 3] the eye position | |
look_at (np.ndarray): [..., 3] the position to look at | |
up (np.ndarray): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction | |
Returns: | |
(np.ndarray): [..., 4, 4], extrinsics matrix | |
""" | |
z = look_at - eye | |
x = np.cross(-up, z) | |
y = np.cross(z, x) | |
# x = np.cross(y, z) | |
x = x / np.linalg.norm(x, axis=-1, keepdims=True) | |
y = y / np.linalg.norm(y, axis=-1, keepdims=True) | |
z = z / np.linalg.norm(z, axis=-1, keepdims=True) | |
R = np.stack([x, y, z], axis=-2) | |
t = -np.matmul(R, eye[..., None]) | |
return np.concatenate([ | |
np.concatenate([R, t], axis=-1), | |
np.array([[[0., 0., 0., 1.]]], dtype=eye.dtype).repeat(eye.shape[0], axis=0) | |
], axis=-2) | |
def perspective_to_intrinsics( | |
perspective: np.ndarray | |
) -> np.ndarray: | |
""" | |
OpenGL perspective matrix to OpenCV intrinsics | |
Args: | |
perspective (np.ndarray): [..., 4, 4] OpenGL perspective matrix | |
Returns: | |
(np.ndarray): shape [..., 3, 3] OpenCV intrinsics | |
""" | |
ret = np.array([[0.5, 0., 0.5], [0., -0.5, 0.5], [0., 0., 1.]], dtype=perspective.dtype) \ | |
return ret | |
def perspective_to_near_far(perspective: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Get near and far planes from OpenGL perspective matrix | |
Args: | |
""" | |
a, b = perspective[..., 2, 2], perspective[..., 2, 3] | |
near, far = b / (a - 1), b / (a + 1) | |
return near, far | |
def intrinsics_to_perspective( | |
intrinsics: np.ndarray, | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray], | |
) -> np.ndarray: | |
""" | |
OpenCV intrinsics to OpenGL perspective matrix | |
NOTE: not work for tile-shifting intrinsics currently | |
Args: | |
intrinsics (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
near (float | np.ndarray): [...] near plane to clip | |
far (float | np.ndarray): [...] far plane to clip | |
Returns: | |
(np.ndarray): [..., 4, 4] OpenGL perspective matrix | |
""" | |
N = intrinsics.shape[0] | |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 1, 1] | |
cx, cy = intrinsics[:, 0, 2], intrinsics[:, 1, 2] | |
ret = np.zeros((N, 4, 4), dtype=intrinsics.dtype) | |
ret[:, 0, 0] = 2 * fx | |
ret[:, 1, 1] = 2 * fy | |
ret[:, 0, 2] = -2 * cx + 1 | |
ret[:, 1, 2] = 2 * cy - 1 | |
ret[:, 2, 2] = (near + far) / (near - far) | |
ret[:, 2, 3] = 2. * near * far / (near - far) | |
ret[:, 3, 2] = -1. | |
return ret | |
def extrinsics_to_view( | |
extrinsics: np.ndarray | |
) -> np.ndarray: | |
""" | |
OpenCV camera extrinsics to OpenGL view matrix | |
Args: | |
extrinsics (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix | |
Returns: | |
(np.ndarray): [..., 4, 4] OpenGL view matrix | |
""" | |
return extrinsics * np.array([1, -1, -1, 1], dtype=extrinsics.dtype)[:, None] | |
def view_to_extrinsics( | |
view: np.ndarray | |
) -> np.ndarray: | |
""" | |
OpenGL view matrix to OpenCV camera extrinsics | |
Args: | |
view (np.ndarray): [..., 4, 4] OpenGL view matrix | |
Returns: | |
(np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix | |
""" | |
return view * np.array([1, -1, -1, 1], dtype=view.dtype)[:, None] | |
def normalize_intrinsics( | |
intrinsics: np.ndarray, | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray], | |
integer_pixel_centers: bool = True | |
) -> np.ndarray: | |
""" | |
Normalize intrinsics from pixel cooridnates to uv coordinates | |
Args: | |
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to normalize | |
width (int | np.ndarray): [...] image width(s) | |
height (int | np.ndarray): [...] image height(s) | |
integer_pixel_centers (bool): whether the integer pixel coordinates are at the center of the pixel. If False, the integer coordinates are at the left-top corner of the pixel. | |
Returns: | |
(np.ndarray): [..., 3, 3] normalized camera intrinsics(s) | |
""" | |
zeros = np.zeros_like(width) | |
ones = np.ones_like(width) | |
if integer_pixel_centers: | |
transform = np.stack([ | |
1 / width, zeros, 0.5 / width, | |
zeros, 1 / height, 0.5 / height, | |
zeros, zeros, ones | |
]).reshape(*zeros.shape, 3, 3) | |
else: | |
transform = np.stack([ | |
1 / width, zeros, zeros, | |
zeros, 1 / height, zeros, | |
zeros, zeros, ones | |
]).reshape(*zeros.shape, 3, 3) | |
return transform @ intrinsics | |
def crop_intrinsics( | |
intrinsics: np.ndarray, | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray], | |
left: Union[int, np.ndarray], | |
top: Union[int, np.ndarray], | |
crop_width: Union[int, np.ndarray], | |
crop_height: Union[int, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width] | |
Args: | |
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to crop | |
width (int | np.ndarray): [...] image width(s) | |
height (int | np.ndarray): [...] image height(s) | |
left (int | np.ndarray): [...] left crop boundary | |
top (int | np.ndarray): [...] top crop boundary | |
crop_width (int | np.ndarray): [...] crop width | |
crop_height (int | np.ndarray): [...] crop height | |
Returns: | |
(np.ndarray): [..., 3, 3] cropped camera intrinsics(s) | |
""" | |
zeros = np.zeros_like(width) | |
ones = np.ones_like(width) | |
transform = np.stack([ | |
width / crop_width, zeros, -left / crop_width, | |
zeros, height / crop_height, -top / crop_height, | |
zeros, zeros, ones | |
]).reshape(*zeros.shape, 3, 3) | |
return transform @ intrinsics | |
def pixel_to_uv( | |
pixel: np.ndarray, | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Args: | |
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
width (int | np.ndarray): [...] image width(s) | |
height (int | np.ndarray): [...] image height(s) | |
Returns: | |
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
""" | |
if not np.issubdtype(pixel.dtype, np.floating): | |
pixel = pixel.astype(np.float32) | |
dtype = pixel.dtype | |
uv = (pixel + np.array(0.5, dtype=dtype)) / np.stack([width, height], axis=-1) | |
return uv | |
def uv_to_pixel( | |
uv: np.ndarray, | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Args: | |
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
width (int | np.ndarray): [...] image width(s) | |
height (int | np.ndarray): [...] image height(s) | |
Returns: | |
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
""" | |
pixel = uv * np.stack([width, height], axis=-1) - 0.5 | |
return pixel | |
def pixel_to_ndc( | |
pixel: np.ndarray, | |
width: Union[int, np.ndarray], | |
height: Union[int, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Args: | |
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
width (int | np.ndarray): [...] image width(s) | |
height (int | np.ndarray): [...] image height(s) | |
Returns: | |
(np.ndarray): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1) | |
""" | |
if not np.issubdtype(pixel.dtype, np.floating): | |
pixel = pixel.astype(np.float32) | |
dtype = pixel.dtype | |
ndc = (pixel + np.array(0.5, dtype=dtype)) / (np.stack([width, height], dim=-1) * np.array([2, -2], dtype=dtype)) \ | |
+ np.array([-1, 1], dtype=dtype) | |
return ndc | |
def project_depth( | |
depth: np.ndarray, | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray] | |
) -> np.ndarray: | |
""" | |
Project linear depth to depth value in screen space | |
Args: | |
depth (np.ndarray): [...] depth value | |
near (float | np.ndarray): [...] near plane to clip | |
far (float | np.ndarray): [...] far plane to clip | |
Returns: | |
(np.ndarray): [..., 1] depth value in screen space, value ranging in [0, 1] | |
""" | |
return (far - near * far / depth) / (far - near) | |
def depth_buffer_to_linear( | |
depth_buffer: np.ndarray, | |
near: Union[float, np.ndarray], | |
far: Union[float, np.ndarray] | |
) -> np.ndarray: | |
""" | |
OpenGL depth buffer to linear depth | |
Args: | |
depth_buffer (np.ndarray): [...] depth value | |
near (float | np.ndarray): [...] near plane to clip | |
far (float | np.ndarray): [...] far plane to clip | |
Returns: | |
(np.ndarray): [..., 1] linear depth | |
""" | |
return near * far / (far - (far - near) * depth_buffer) | |
def project_gl( | |
points: np.ndarray, | |
model: np.ndarray = None, | |
view: np.ndarray = None, | |
perspective: np.ndarray = None | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Project 3D points to 2D following the OpenGL convention (except for row major matrice) | |
Args: | |
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last | |
dimension is 4, the points are assumed to be in homogeneous coordinates | |
model (np.ndarray): [..., 4, 4] model matrix | |
view (np.ndarray): [..., 4, 4] view matrix | |
perspective (np.ndarray): [..., 4, 4] perspective matrix | |
Returns: | |
scr_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1]. | |
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
linear_depth (np.ndarray): [..., N] linear depth | |
""" | |
assert perspective is not None, "perspective matrix is required" | |
if points.shape[-1] == 3: | |
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
if model is not None: | |
points = points @ model.swapaxes(-1, -2) | |
if view is not None: | |
points = points @ view.swapaxes(-1, -2) | |
clip_coord = points @ perspective.swapaxes(-1, -2) | |
ndc_coord = clip_coord[..., :3] / clip_coord[..., 3:] | |
scr_coord = ndc_coord * 0.5 + 0.5 | |
linear_depth = clip_coord[..., 3] | |
return scr_coord, linear_depth | |
def project_cv( | |
points: np.ndarray, | |
extrinsics: np.ndarray = None, | |
intrinsics: np.ndarray = None | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Project 3D points to 2D following the OpenCV convention | |
Args: | |
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last | |
dimension is 4, the points are assumed to be in homogeneous coordinates | |
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix | |
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix | |
Returns: | |
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
The origin (0., 0.) is corresponding to the left & top | |
linear_depth (np.ndarray): [..., N] linear depth | |
""" | |
assert intrinsics is not None, "intrinsics matrix is required" | |
if points.shape[-1] == 3: | |
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
if extrinsics is not None: | |
points = points @ extrinsics.swapaxes(-1, -2) | |
points = points[..., :3] @ intrinsics.swapaxes(-1, -2) | |
uv_coord = points[..., :2] / points[..., 2:] | |
linear_depth = points[..., 2] | |
return uv_coord, linear_depth | |
def unproject_gl( | |
screen_coord: np.ndarray, | |
model: np.ndarray = None, | |
view: np.ndarray = None, | |
perspective: np.ndarray = None | |
) -> np.ndarray: | |
""" | |
Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice) | |
Args: | |
screen_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1]. | |
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
model (np.ndarray): [..., 4, 4] model matrix | |
view (np.ndarray): [..., 4, 4] view matrix | |
perspective (np.ndarray): [..., 4, 4] perspective matrix | |
Returns: | |
points (np.ndarray): [..., N, 3] 3d points | |
""" | |
assert perspective is not None, "perspective matrix is required" | |
ndc_xy = screen_coord * 2 - 1 | |
clip_coord = np.concatenate([ndc_xy, np.ones_like(ndc_xy[..., :1])], axis=-1) | |
transform = perspective | |
if view is not None: | |
transform = transform @ view | |
if model is not None: | |
transform = transform @ model | |
transform = np.linalg.inv(transform) | |
points = clip_coord @ transform.swapaxes(-1, -2) | |
points = points[..., :3] / points[..., 3:] | |
return points | |
def unproject_cv( | |
uv_coord: np.ndarray, | |
depth: np.ndarray, | |
extrinsics: np.ndarray = None, | |
intrinsics: np.ndarray = None | |
) -> np.ndarray: | |
""" | |
Unproject uv coordinates to 3D view space following the OpenCV convention | |
Args: | |
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
The origin (0., 0.) is corresponding to the left & top | |
depth (np.ndarray): [..., N] depth value | |
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix | |
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix | |
Returns: | |
points (np.ndarray): [..., N, 3] 3d points | |
""" | |
assert intrinsics is not None, "intrinsics matrix is required" | |
points = np.concatenate([uv_coord, np.ones_like(uv_coord[..., :1])], axis=-1) | |
points = points @ np.linalg.inv(intrinsics).swapaxes(-1, -2) | |
points = points * depth[..., None] | |
if extrinsics is not None: | |
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
points = (points @ np.linalg.inv(extrinsics).swapaxes(-1, -2))[..., :3] | |
return points | |
def quaternion_to_matrix(quaternion: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
"""Converts a batch of quaternions (w, x, y, z) to rotation matrices | |
Args: | |
quaternion (np.ndarray): shape (..., 4), the quaternions to convert | |
Returns: | |
np.ndarray: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions | |
""" | |
assert quaternion.shape[-1] == 4 | |
quaternion = quaternion / np.linalg.norm(quaternion, axis=-1, keepdims=True).clip(min=eps) | |
w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3] | |
zeros = np.zeros_like(w) | |
I = np.eye(3, dtype=quaternion.dtype) | |
xyz = quaternion[..., 1:] | |
A = xyz[..., :, None] * xyz[..., None, :] - I * (xyz ** 2).sum(axis=-1)[..., None, None] | |
B = np.stack([ | |
zeros, -z, y, | |
z, zeros, -x, | |
-y, x, zeros | |
], axis=-1).reshape(*quaternion.shape[:-1], 3, 3) | |
rot_mat = I + 2 * (A + w[..., None, None] * B) | |
return rot_mat | |
def matrix_to_quaternion(rot_mat: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
"""Convert 3x3 rotation matrix to quaternion (w, x, y, z) | |
Args: | |
rot_mat (np.ndarray): shape (..., 3, 3), the rotation matrices to convert | |
Returns: | |
np.ndarray: shape (..., 4), the quaternions corresponding to the given rotation matrices | |
""" | |
# Extract the diagonal and off-diagonal elements of the rotation matrix | |
m00, m01, m02, m10, m11, m12, m20, m21, m22 = [rot_mat[..., i, j] for i in range(3) for j in range(3)] | |
diag = np.diagonal(rot_mat, axis1=-2, axis2=-1) | |
M = np.array([ | |
[1, 1, 1], | |
[1, -1, -1], | |
[-1, 1, -1], | |
[-1, -1, 1] | |
], dtype=rot_mat.dtype) | |
wxyz = 0.5 * np.clip(1 + diag @ M.T, 0.0, None) ** 0.5 | |
max_idx = np.argmax(wxyz, axis=-1) | |
xw = np.sign(m21 - m12) | |
yw = np.sign(m02 - m20) | |
zw = np.sign(m10 - m01) | |
yz = np.sign(m21 + m12) | |
xz = np.sign(m02 + m20) | |
xy = np.sign(m01 + m10) | |
ones = np.ones_like(xw) | |
sign = np.where( | |
max_idx[..., None] == 0, | |
np.stack([ones, xw, yw, zw], axis=-1), | |
np.where( | |
max_idx[..., None] == 1, | |
np.stack([xw, ones, xy, xz], axis=-1), | |
np.where( | |
max_idx[..., None] == 2, | |
np.stack([yw, xy, ones, yz], axis=-1), | |
np.stack([zw, xz, yz, ones], axis=-1) | |
) | |
) | |
) | |
quat = sign * wxyz | |
quat = quat / np.linalg.norm(quat, axis=-1, keepdims=True).clip(min=eps) | |
return quat | |
def extrinsics_to_essential(extrinsics: np.ndarray): | |
""" | |
extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0` | |
Args: | |
extrinsics (np.ndaray): [..., 4, 4] extrinsics matrix | |
Returns: | |
(np.ndaray): [..., 3, 3] essential matrix | |
""" | |
assert extrinsics.shape[-2:] == (4, 4) | |
R = extrinsics[..., :3, :3] | |
t = extrinsics[..., :3, 3] | |
zeros = np.zeros_like(t[..., 0]) | |
t_x = np.stack([ | |
zeros, -t[..., 2], t[..., 1], | |
t[..., 2], zeros, -t[..., 0], | |
-t[..., 1], t[..., 0], zeros | |
]).reshape(*t.shape[:-1], 3, 3) | |
return t_x @ R | |
def euler_axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = np.cos(angle) | |
sin = np.sin(angle) | |
one = np.ones_like(angle) | |
zero = np.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def euler_angles_to_matrix(euler_angles: np.ndarray, convention: str = 'XYZ') -> np.ndarray: | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as ndarray of shape (..., 3), XYZ | |
convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply. | |
Returns: | |
Rotation matrices as ndarray of shape (..., 3, 3). | |
""" | |
if euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = [ | |
euler_axis_angle_rotation(c, euler_angles[..., 'XYZ'.index(c)]) | |
for c in convention | |
] | |
return matrices[2] @ matrices[1] @ matrices[0] | |
def skew_symmetric(v: np.ndarray): | |
"Skew symmetric matrix from a 3D vector" | |
assert v.shape[-1] == 3, "v must be 3D" | |
x, y, z = v[..., 0], v[..., 1], v[..., 2] | |
zeros = np.zeros_like(x) | |
return np.stack([ | |
zeros, -z, y, | |
z, zeros, -x, | |
-y, x, zeros, | |
], axis=-1).reshape(*v.shape[:-1], 3, 3) | |
def rotation_matrix_from_vectors(v1: np.ndarray, v2: np.ndarray): | |
"Rotation matrix that rotates v1 to v2" | |
I = np.eye(3, dtype=v1.dtype) | |
v1 = v1 / np.linalg.norm(v1, axis=-1) | |
v2 = v2 / np.linalg.norm(v2, axis=-1) | |
v = np.cross(v1, v2, axis=-1) | |
c = np.sum(v1 * v2, axis=-1) | |
K = skew_symmetric(v) | |
R = I + K + (1 / (1 + c)).astype(v1.dtype)[None, None] * (K @ K) # Avoid numpy's default type casting for scalars | |
return R | |
def axis_angle_to_matrix(axis_angle: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
"""Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation | |
Args: | |
axis_angle (np.ndarray): shape (..., 3), axis-angle vcetors | |
Returns: | |
np.ndarray: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters | |
""" | |
batch_shape = axis_angle.shape[:-1] | |
dtype = axis_angle.dtype | |
angle = np.linalg.norm(axis_angle, axis=-1, keepdims=True) | |
axis = axis_angle / (angle + eps) | |
cos = np.cos(angle)[..., None, :] | |
sin = np.sin(angle)[..., None, :] | |
rx, ry, rz = np.split(axis, 3, axis=-1) | |
zeros = np.zeros((*batch_shape, 1), dtype=dtype) | |
K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], axis=-1).reshape((*batch_shape, 3, 3)) | |
ident = np.eye(3, dtype=dtype) | |
rot_mat = ident + sin * K + (1 - cos) * (K @ K) | |
return rot_mat | |
def ray_intersection(p1: np.ndarray, d1: np.ndarray, p2: np.ndarray, d2: np.ndarray): | |
""" | |
Compute the intersection/closest point of two D-dimensional rays | |
If the rays are intersecting, the closest point is the intersection point. | |
Args: | |
p1 (np.ndarray): (..., D) origin of ray 1 | |
d1 (np.ndarray): (..., D) direction of ray 1 | |
p2 (np.ndarray): (..., D) origin of ray 2 | |
d2 (np.ndarray): (..., D) direction of ray 2 | |
Returns: | |
(np.ndarray): (..., N) intersection point | |
""" | |
p1, d1, p2, d2 = np.broadcast_arrays(p1, d1, p2, d2) | |
dtype = p1.dtype | |
dim = p1.shape[-1] | |
d = np.stack([d1, d2], axis=-2) # (..., 2, D) | |
p = np.stack([p1, p2], axis=-2) # (..., 2, D) | |
A = np.concatenate([ | |
(np.eye(dim, dtype=dtype) * np.ones((*p.shape[:-2], 2, 1, 1))).reshape(*d.shape[:-2], 2 * dim, dim), # (..., 2 * D, D) | |
-(np.eye(2, dtype=dtype)[..., None] * d[..., None, :]).swapaxes(-2, -1).reshape(*d.shape[:-2], 2 * dim, 2) # (..., 2 * D, 2) | |
], axis=-1) # (..., 2 * D, D + 2) | |
b = p.reshape(*p.shape[:-2], 2 * dim) # (..., 2 * D) | |
x = np.linalg.solve(A.swapaxes(-1, -2) @ A + 1e-12 * np.eye(dim + 2, dtype=dtype), (A.swapaxes(-1, -2) @ b[..., :, None])[..., 0]) | |
return x[..., :dim], (x[..., dim], x[..., dim + 1]) | |
def se3_matrix(R: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Convert rotation matrix and translation vector to 4x4 transformation matrix. | |
Args: | |
R (np.ndarray): [..., 3, 3] rotation matrix | |
t (np.ndarray): [..., 3] translation vector | |
Returns: | |
np.ndarray: [..., 4, 4] transformation matrix | |
""" | |
assert R.shape[:-2] == t.shape[:-1] | |
assert R.shape[-1] == 3 and R.shape[-2] == 3 | |
return np.concatenate([ | |
np.concatenate([R, t[..., None]], axis=-1), | |
np.concatenate([np.zeros_like(t), np.ones_like(t[..., :1])], axis=-1)[..., None, :] | |
], axis=-2) | |
def slerp_quaternion(q1: np.ndarray, q2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Spherical linear interpolation between two unit quaternions. | |
Args: | |
q1 (np.ndarray): [..., d] unit vector 1 | |
q2 (np.ndarray): [..., d] unit vector 2 | |
t (np.ndarray): [...] interpolation parameter in [0, 1] | |
Returns: | |
np.ndarray: [..., 3] interpolated unit vector | |
""" | |
q1 = q1 / np.linalg.norm(q1, axis=-1, keepdims=True) | |
q2 = q2 / np.linalg.norm(q2, axis=-1, keepdims=True) | |
dot = np.sum(q1 * q2, axis=-1, keepdims=True) | |
dot = np.where(dot < 0, -dot, dot) # handle negative dot product | |
dot = np.minimum(dot, 1.) | |
theta = np.arccos(dot) * t | |
q_ortho = q2 - q1 * dot | |
q_ortho = q_ortho / np.maximum(np.linalg.norm(q_ortho, axis=-1, keepdims=True), 1e-12) | |
q = q1 * np.cos(theta) + q_ortho * np.sin(theta) | |
return q | |
def slerp_rotation_matrix(R1: np.ndarray, R2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Spherical linear interpolation between two rotation matrices. | |
Args: | |
R1 (np.ndarray): [..., 3, 3] rotation matrix 1 | |
R2 (np.ndarray): [..., 3, 3] rotation matrix 2 | |
t (np.ndarray): [...] interpolation parameter in [0, 1] | |
Returns: | |
np.ndarray: [..., 3, 3] interpolated rotation matrix | |
""" | |
quat1 = matrix_to_quaternion(R1) | |
quat2 = matrix_to_quaternion(R2) | |
quat = slerp_quaternion(quat1, quat2, t) | |
return quaternion_to_matrix(quat) | |
def slerp_vector(v1: np.ndarray, v2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Spherical linear interpolation between two unit vectors. The vectors are assumed to be normalized. | |
Args: | |
v1 (np.ndarray): [..., d] unit vector 1 | |
v2 (np.ndarray): [..., d] unit vector 2 | |
t (np.ndarray): [...] interpolation parameter in [0, 1] | |
Returns: | |
np.ndarray: [..., d] interpolated unit vector | |
""" | |
dot = np.sum(v1 * v2, axis=-1, keepdims=True) | |
dot = np.minimum(dot, 1.) | |
theta = np.arccos(dot) * t | |
v_ortho = v2 - v1 * dot | |
v_ortho = v_ortho / np.maximum(np.linalg.norm(v_ortho, axis=-1, keepdims=True), 1e-12) | |
v = v1 * np.cos(theta) + v_ortho * np.sin(theta) | |
return v | |
def lerp(x1: np.ndarray, x2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Linear interpolation between two vectors. | |
Args: | |
x1 (np.ndarray): [..., d] vector 1 | |
x2 (np.ndarray): [..., d] vector 2 | |
t (np.ndarray): [...] interpolation parameter. [0, 1] for interpolation between x1 and x2, otherwise for extrapolation. | |
Returns: | |
np.ndarray: [..., d] interpolated vector | |
""" | |
return x1 + np.asarray(t)[..., None] * (x2 - x1) | |
def lerp_se3_matrix(T1: np.ndarray, T2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
""" | |
Linear interpolation between two SE(3) matrices. | |
Args: | |
T1 (np.ndarray): [..., 4, 4] SE(3) matrix 1 | |
T2 (np.ndarray): [..., 4, 4] SE(3) matrix 2 | |
t (np.ndarray): [...] interpolation parameter in [0, 1] | |
Returns: | |
np.ndarray: [..., 4, 4] interpolated SE(3) matrix | |
""" | |
R1 = T1[..., :3, :3] | |
R2 = T2[..., :3, :3] | |
trans1 = T1[..., :3, 3] | |
trans2 = T2[..., :3, 3] | |
R = slerp_rotation_matrix(R1, R2, t) | |
trans = lerp(trans1, trans2, t) | |
return se3_matrix(R, trans) | |
def piecewise_lerp(x: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray: | |
""" | |
Linear spline interpolation. | |
### Parameters: | |
- `x`: np.ndarray, shape (n, d): the values of data points. | |
- `t`: np.ndarray, shape (n,): the times of the data points. | |
- `s`: np.ndarray, shape (m,): the times to be interpolated. | |
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly. | |
### Returns: | |
- `y`: np.ndarray, shape (..., m, d): the interpolated values. | |
""" | |
i = np.searchsorted(t, s, side='left') | |
if extrapolation_mode == 'constant': | |
prev = np.clip(i - 1, 0, len(t) - 1) | |
suc = np.clip(i, 0, len(t) - 1) | |
elif extrapolation_mode == 'linear': | |
prev = np.clip(i - 1, 0, len(t) - 2) | |
suc = np.clip(i, 1, len(t) - 1) | |
else: | |
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}') | |
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12) | |
y = lerp(x[prev], x[suc], u) | |
return y | |
def piecewise_lerp_se3_matrix(T: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray: | |
""" | |
Linear spline interpolation for SE(3) matrices. | |
### Parameters: | |
- `T`: np.ndarray, shape (n, 4, 4): the SE(3) matrices. | |
- `t`: np.ndarray, shape (n,): the times of the data points. | |
- `s`: np.ndarray, shape (m,): the times to be interpolated. | |
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly. | |
### Returns: | |
- `T_interp`: np.ndarray, shape (..., m, 4, 4): the interpolated SE(3) matrices. | |
""" | |
i = np.searchsorted(t, s, side='left') | |
if extrapolation_mode == 'constant': | |
prev = np.clip(i - 1, 0, len(t) - 1) | |
suc = np.clip(i, 0, len(t) - 1) | |
elif extrapolation_mode == 'linear': | |
prev = np.clip(i - 1, 0, len(t) - 2) | |
suc = np.clip(i, 1, len(t) - 1) | |
else: | |
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}') | |
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12) | |
T = lerp_se3_matrix(T[prev], T[suc], u) | |
return T | |
def apply_transform(T: np.ndarray, x: np.ndarray) -> np.ndarray: | |
""" | |
Apply SE(3) transformation to a point or a set of points. | |
### Parameters: | |
- `T`: np.ndarray, shape (..., 4, 4): the SE(3) matrix. | |
- `x`: np.ndarray, shape (..., 3): the point or a set of points to be transformed. | |
### Returns: | |
- `x_transformed`: np.ndarray, shape (..., 3): the transformed point or a set of points. | |
""" | |
x = np.asarray(x) | |
assert x.shape[-1] == 3 | |
T = np.asarray(T) | |
assert T.shape[-2:] == (4, 4) | |
x_transformed = (T[..., :3, :3] @ x[..., :, None]) + T[..., :3, 3][..., None] | |
return x_transformed[..., 0] |