File size: 10,863 Bytes
56fd21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd6be
 
 
 
 
 
 
 
 
 
 
56fd21a
 
 
 
 
 
 
 
 
0fbb073
 
 
 
56fd21a
 
 
 
 
 
 
 
0fbb073
 
 
 
 
56fd21a
0fbb073
56fd21a
 
 
 
 
 
0fbb073
56fd21a
0fbb073
 
 
 
56fd21a
0fbb073
 
 
 
 
56fd21a
 
0fbb073
 
 
 
56fd21a
 
 
0fbb073
 
 
56fd21a
 
0fbb073
 
 
 
 
56fd21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07dd6be
 
 
 
 
 
 
 
56fd21a
07dd6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed07e8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import time
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback

# Initialize environment variables
load_dotenv()

# --------------- Session State Initialization ---------------
def init_session_state():
    """Initialize all required session state variables"""
    defaults = {
        'kb_info': {
            'build_time': None,
            'size': None,
            'version': '1.1'
        },
        'messages': [],
        'vector_store': None,
        'models_initialized': False
    }
    
    for key, value in defaults.items():
        if key not in st.session_state:
            st.session_state[key] = value

# --------------- Enhanced Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str):
    """Log interactions with error handling"""
    try:
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "bot_response": bot_response,
            "context": context[:500],  # Store first 500 chars of context
            "kb_version": st.session_state.kb_info['version']
        }
        
        os.makedirs("chat_history", exist_ok=True)
        log_path = os.path.join("chat_history", "chat_logs.json")
        
        with open(log_path, "a", encoding="utf-8") as f:
            f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
            
    except Exception as e:
        st.error(f"Logging error: {str(e)}")
        print(traceback.format_exc())

# --------------- Model Initialization ---------------
@st.cache_resource
def init_models():
    """Initialize AI models with caching"""
    try:
        llm = ChatGroq(
            model_name="llama-3.3-70b-versatile",
            temperature=0.6,
            api_key=os.getenv("GROQ_API_KEY")
        )
        embeddings = HuggingFaceEmbeddings(
            model_name="intfloat/multilingual-e5-large-instruct"
        )
        st.session_state.models_initialized = True
        return llm, embeddings
    except Exception as e:
        st.error(f"Model initialization failed: {str(e)}")
        st.stop()

# --------------- Knowledge Base Management ---------------
VECTOR_STORE_PATH = "vector_store"
URLS = [
    "https://status.law",
    "https://status.law/about",
    "https://status.law/careers",  
    "https://status.law/tariffs-for-services-of-protection-against-extradition",
    "https://status.law/challenging-sanctions",
    "https://status.law/law-firm-contact-legal-protection"
    "https://status.law/cross-border-banking-legal-issues", 
    "https://status.law/extradition-defense", 
    "https://status.law/international-prosecution-protection", 
    "https://status.law/interpol-red-notice-removal",  
    "https://status.law/practice-areas",  
    "https://status.law/reputation-protection",
    "https://status.law/faq"
]

def build_knowledge_base(_embeddings):
    """Build or update the knowledge base"""
    try:
        start_time = time.time()
        documents = []
        
        with st.status("Building knowledge base..."):
            # Создаем папку заранее
            os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
            
            # Загрузка документов
            for url in URLS:
                try:
                    loader = WebBaseLoader(url)
                    docs = loader.load()
                    documents.extend(docs)
                    st.write(f"✓ Loaded {url}")
                except Exception as e:
                    st.error(f"Failed to load {url}: {str(e)}")
                    continue  # Продолжаем при ошибках загрузки

            if not documents:
                st.error("No documents loaded!")
                return None

            # Разделение на чанки
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=500,
                chunk_overlap=100
            )
            chunks = text_splitter.split_documents(documents)
            
            # Явное сохранение
            vector_store = FAISS.from_documents(chunks, _embeddings)
            vector_store.save_local(
                folder_path=VECTOR_STORE_PATH,
                index_name="index"
            )
            
            # Проверка создания файлов
            if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
                raise RuntimeError("FAISS index file not created!")
                
            # Обновление информации
            st.session_state.kb_info.update({
                'build_time': time.time() - start_time,
                'size': sum(
                    os.path.getsize(os.path.join(VECTOR_STORE_PATH, f)) 
                    for f in ["index.faiss", "index.pkl"]
                ) / (1024 ** 2),
                'version': datetime.now().strftime("%Y%m%d-%H%M%S")
            })
            
            st.success("Knowledge base successfully created!")
            return vector_store
            
    except Exception as e:
        st.error(f"Knowledge base creation failed: {str(e)}")
        # Отладочная информация
        st.write("Debug info:")
        st.write(f"Documents loaded: {len(documents)}")
        st.write(f"Chunks created: {len(chunks) if 'chunks' in locals() else 0}")
        st.write(f"Vector store path exists: {os.path.exists(VECTOR_STORE_PATH)}")
        st.stop()
# --------------- Main Application ---------------
def main():
    # Initialize session state first
    init_session_state()
    
    # Page configuration
    st.set_page_config(
        page_title="Status Law Assistant",
        page_icon="⚖️",
        layout="wide"
    )
    
    # Display header
    st.markdown('''
        <h1 style="border-bottom: 2px solid #444; padding-bottom: 10px;">
            ⚖️ <a href="https://status.law/" style="text-decoration: none; color: #2B5876;">Status.Law</a> Legal Assistant
        </h1>
    ''', unsafe_allow_html=True)

    # Initialize models
    llm, embeddings = init_models()
    
    # Knowledge base initialization
    if not os.path.exists(VECTOR_STORE_PATH):
        st.warning("Knowledge base not initialized")
        if st.button("Create Knowledge Base"):
            st.session_state.vector_store = build_knowledge_base(embeddings)
            st.rerun()
        return
    
    if not st.session_state.vector_store:
        try:
            st.session_state.vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )
        except Exception as e:
            st.error(f"Failed to load knowledge base: {str(e)}")
            st.stop()

    # Chat interface
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("Ask your legal question"):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        # Generate response
        with st.chat_message("assistant"):
            try:
                # Retrieve context
                context_docs = st.session_state.vector_store.similarity_search(prompt)
                context_text = "\n".join([d.page_content for d in context_docs])
                
                # Generate response
                prompt_template = PromptTemplate.from_template('''
                    You are a helpful and polite legal assistant at Status Law.
                    You answer in the language in which the question was asked.
                    Answer the question based on the context provided.
                    If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
                    - For all users: +32465594521 (landline phone).
                    - For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
                    - Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
                    If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.

                    Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.

                    Also, offer free consultations if they are available and suitable for the user's request.
                    Answer professionally but in a friendly manner.

                    Example:
                    Q: How can I challenge the sanctions?
                    A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).

                    Context: {context}
                    Question: {question}
                    
                    Response Guidelines:
                    1. Answer in the user's language
                    2. Cite sources when possible
                    3. Offer contact options if unsure
                    ''')
                
                chain = prompt_template | llm | StrOutputParser()
                response = chain.invoke({
                    "context": context_text,
                    "question": prompt
                })
                
                # Display and log
                st.markdown(response)
                log_interaction(prompt, response, context_text)
                st.session_state.messages.append({"role": "assistant", "content": response})
                
            except Exception as e:
                error_msg = f"Error generating response: {str(e)}"
                st.error(error_msg)
                log_interaction(prompt, error_msg, "")
                print(traceback.format_exc())

if __name__ == "__main__":
    main()