File size: 9,248 Bytes
ed07e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import time
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
import requests
import json

# Логирует взаимодействие в JSON-файл
from datetime import datetime


def log_interaction(user_input: str, bot_response: str):
    """Логирует взаимодействие в JSON-файл"""
    log_entry = {
        "timestamp": datetime.now().isoformat(),
        "user_input": user_input,
        "bot_response": bot_response
    }
    
    log_dir = "chat_history"
    os.makedirs(log_dir, exist_ok=True)
    
    log_path = os.path.join(log_dir, "chat_logs.json")
    with open(log_path, "a") as f:
        f.write(json.dumps(log_entry) + "\n")

#



# Page configuration
st.set_page_config(page_title="Status Law Assistant", page_icon="⚖️")

# Knowledge base info in session_state
if 'kb_info' not in st.session_state:
    st.session_state.kb_info = {
        'build_time': None,
        'size': None
    }

# Display title and knowledge base info
# st.title("www.Status.Law Legal Assistant")

st.markdown(
    '''

    <h1>

        ⚖️ 

        <a href="https://status.law/" style="text-decoration: underline; color: blue; font-size: inherit;">

            Status.Law

        </a> 

        Legal Assistant

    </h1>

    ''',
    unsafe_allow_html=True
)

if st.session_state.kb_info['build_time'] and st.session_state.kb_info['size']:
    st.caption(f"(Knowledge base build time: {st.session_state.kb_info['build_time']:.2f} seconds, "
               f"size: {st.session_state.kb_info['size']:.2f} MB)")

# Path to store vector database
VECTOR_STORE_PATH = "vector_store"

# Создание папки истории, если она не существует
if not os.path.exists("chat_history"):
    os.makedirs("chat_history")

# Website URLs
urls = [
    "https://status.law",  
    "https://status.law/about",
    "https://status.law/careers",  
    "https://status.law/tariffs-for-services-of-protection-against-extradition",
    "https://status.law/challenging-sanctions",
    "https://status.law/law-firm-contact-legal-protection"
    "https://status.law/cross-border-banking-legal-issues", 
    "https://status.law/extradition-defense", 
    "https://status.law/international-prosecution-protection", 
    "https://status.law/interpol-red-notice-removal",  
    "https://status.law/practice-areas",  
    "https://status.law/reputation-protection",
    "https://status.law/faq"
]

# Load secrets
try:
    GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
except Exception as e:
    st.error("Error loading secrets. Please check your configuration.")
    st.stop()

# Initialize models
@st.cache_resource
def init_models():
    llm = ChatGroq(
        model_name="llama-3.3-70b-versatile",
        temperature=0.6,
        api_key=GROQ_API_KEY
    )
    embeddings = HuggingFaceEmbeddings(
        model_name="intfloat/multilingual-e5-large-instruct"
    )
    return llm, embeddings

# Build knowledge base
def build_knowledge_base(embeddings):
    start_time = time.time()
    
    documents = []
    with st.status("Loading website content...") as status:
        for url in urls:
            try:
                loader = WebBaseLoader(url)
                docs = loader.load()
                documents.extend(docs)
                status.update(label=f"Loaded {url}")
            except Exception as e:
                st.error(f"Error loading {url}: {str(e)}")
                
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=100
    )
    chunks = text_splitter.split_documents(documents)
    
    vector_store = FAISS.from_documents(chunks, embeddings)
    vector_store.save_local(VECTOR_STORE_PATH)
    
    end_time = time.time()
    build_time = end_time - start_time
    
    # Calculate knowledge base size
    total_size = 0
    for path, dirs, files in os.walk(VECTOR_STORE_PATH):
        for f in files:
            fp = os.path.join(path, f)
            total_size += os.path.getsize(fp)
    size_mb = total_size / (1024 * 1024)
    
    # Save knowledge base info
    st.session_state.kb_info['build_time'] = build_time
    st.session_state.kb_info['size'] = size_mb
    
    st.success(f"""

    Knowledge base created successfully:

    - Time taken: {build_time:.2f} seconds

    - Size: {size_mb:.2f} MB

    - Number of chunks: {len(chunks)}

    """)
    
    return vector_store

# Main function
def main():
    # Initialize models
    llm, embeddings = init_models()
    
    # Check if knowledge base exists
    if not os.path.exists(VECTOR_STORE_PATH):
        st.warning("Knowledge base not found.")
        if st.button("Create Knowledge Base"):
            vector_store = build_knowledge_base(embeddings)
            st.session_state.vector_store = vector_store
            st.rerun()
    else:
        if 'vector_store' not in st.session_state:
            st.session_state.vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )
    
    # Chat mode
    if 'vector_store' in st.session_state:
        if 'messages' not in st.session_state:
            st.session_state.messages = []
            
        # Display chat history
        for message in st.session_state.messages:
            st.chat_message("user").write(message["question"])
            st.chat_message("assistant").write(message["answer"])
            
        # User input
        if question := st.chat_input("Ask your question"):
            st.chat_message("user").write(question)
            
            # Retrieve context and generate response
            with st.chat_message("assistant"):
                with st.spinner("Thinking..."):
                    context = st.session_state.vector_store.similarity_search(question)
                    context_text = "\n".join([doc.page_content for doc in context])
                    
                    prompt = PromptTemplate.from_template("""

                    You are a helpful and polite legal assistant at Status Law.

                    You answer in the language in which the question was asked.

                    Answer the question based on the context provided.

                    If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:

                    - For all users: +32465594521 (landline phone).

                    - For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).

                    - Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).

                    If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.



                    Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.



                    Also, offer free consultations if they are available and suitable for the user's request.

                    Answer professionally but in a friendly manner.



                    Example:

                    Q: How can I challenge the sanctions?

                    A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).



                    Context: {context}

                    Question: {question}

                    """)
                    
                    chain = prompt | llm | StrOutputParser()
                    response = chain.invoke({
                        "context": context_text,
                        "question": question
                    })
                    
                    st.write(response)
                    
                    
                    # В блоке генерации ответа (после st.write(response))   
                    log_interaction(question, response)
                    # Save chat history
                    st.session_state.messages.append({
                        "question": question,
                        "answer": response
                    })

if __name__ == "__main__":
    main()