File size: 18,186 Bytes
b88df70 c2a566f b88df70 6188e73 b88df70 e1e3365 b88df70 c2a566f e1e3365 c2a566f e1e3365 c2a566f e1e3365 b88df70 58849bb c2a566f b88df70 58849bb c2a566f e1e3365 c2a566f e1e3365 c2a566f b88df70 58849bb b88df70 58849bb b88df70 58849bb b88df70 2d58515 b88df70 2d58515 b88df70 75ffb15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import os
#os.environ["TRANSFORMERS_CACHE"] = "cache/huggingface"
os.environ["HF_HOME"] = "cache/huggingface"
os.environ["HUGGINGFACE_HUB_CACHE"] = "cache/huggingface"
os.environ["XDG_CACHE_HOME"] = "cache"
os.makedirs("cache/huggingface", exist_ok=True)
import time
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback
from typing import Dict, List, Optional
from pydantic import BaseModel
from huggingface_hub import Repository, snapshot_download
import requests
from bs4 import BeautifulSoup
# Initialize environment variables
load_dotenv()
# Constants for paths and URLs
VECTOR_STORE_PATH = "vector_store"
LOCAL_CHAT_HISTORY_PATH = "chat_history"
DATA_SNAPSHOT_PATH = "data_snapshot"
HF_DATASET_REPO = "Rulga/LS_chat"
URLS = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-of-protection-against-extradition",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection",
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Initialize the FastAPI app
app = FastAPI(title="Status Law Assistant API")
# Remove the static files mounting since we don't need it
# app.mount("/static", StaticFiles(directory="static"), name="static")
# Web interface route
@app.get("/web", response_class=HTMLResponse)
async def web_interface():
with open("index.html", "r", encoding="utf-8") as f:
return HTMLResponse(content=f.read())
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define request and response models
class ChatRequest(BaseModel):
message: str
conversation_id: Optional[str] = None
class ChatResponse(BaseModel):
response: str
conversation_id: str
class BuildKnowledgeBaseResponse(BaseModel):
status: str
message: str
details: Optional[Dict] = None
# Global variables for models and knowledge base
llm = None
embeddings = None
vector_store = None
kb_info = {
'build_time': None,
'size': None,
'version': '1.1'
}
# --------------- Hugging Face Dataset Integration ---------------
def init_hf_dataset_integration():
"""Initialize integration with Hugging Face dataset for persistence"""
try:
# Download the latest snapshot of the dataset if it exists
if os.getenv("HF_TOKEN"):
# With authentication if token provided
snapshot_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
local_dir="./data_snapshot",
token=os.getenv("HF_TOKEN")
)
else:
# Try without authentication for public datasets
snapshot_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
local_dir="./data_snapshot"
)
# Check if vector store exists in the downloaded data
if os.path.exists("./data_snapshot/vector_store/index.faiss"):
# Copy to the local vector store path
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
os.system(f"cp -r ./data_snapshot/vector_store/* {VECTOR_STORE_PATH}/")
return True
except Exception as e:
print(f"Error downloading dataset: {e}")
return False
def upload_to_hf_dataset():
"""Upload the vector store and chat history to the Hugging Face dataset"""
if not os.getenv("HF_TOKEN"):
print("HF_TOKEN not set, cannot upload to Hugging Face")
return False
try:
# Clone the repository
repo = Repository(
local_dir="./data_upload",
clone_from=HF_DATASET_REPO,
repo_type="dataset",
token=os.getenv("HF_TOKEN")
)
# Copy the vector store files
if os.path.exists(f"{VECTOR_STORE_PATH}/index.faiss"):
os.makedirs("./data_upload/vector_store", exist_ok=True)
os.system(f"cp -r {VECTOR_STORE_PATH}/* ./data_upload/vector_store/")
# Copy the chat history
if os.path.exists(f"{LOCAL_CHAT_HISTORY_PATH}/chat_logs.json"):
os.makedirs("./data_upload/chat_history", exist_ok=True)
os.system(f"cp -r {LOCAL_CHAT_HISTORY_PATH}/* ./data_upload/chat_history/")
# Push to Hugging Face
repo.push_to_hub(commit_message="Update vector store and chat history")
return True
except Exception as e:
print(f"Error uploading to dataset: {e}")
return False
# --------------- Enhanced Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str, conversation_id: str):
"""Log interactions with error handling"""
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"conversation_id": conversation_id,
"user_input": user_input,
"bot_response": bot_response,
"context": context[:500] if context else "",
"kb_version": kb_info['version']
}
os.makedirs(LOCAL_CHAT_HISTORY_PATH, exist_ok=True)
log_path = os.path.join(LOCAL_CHAT_HISTORY_PATH, "chat_logs.json")
with open(log_path, "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
# Upload to Hugging Face after logging
upload_to_hf_dataset()
except Exception as e:
print(f"Logging error: {str(e)}")
print(traceback.format_exc())
# --------------- Model Initialization ---------------
def init_models():
"""Initialize AI models"""
global llm, embeddings
if not llm:
try:
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=os.getenv("GROQ_API_KEY")
)
except Exception as e:
print(f"LLM initialization failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"LLM initialization failed: {str(e)}")
if not embeddings:
try:
embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large-instruct"
)
except Exception as e:
print(f"Embeddings initialization failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Embeddings initialization failed: {str(e)}")
return llm, embeddings
# --------------- Knowledge Base Management ---------------
def check_url_availability(url: str, headers: dict) -> bool:
"""Check if URL is accessible"""
try:
response = requests.head(url, headers=headers, timeout=10)
return response.status_code == 200
except Exception as e:
print(f"URL check failed for {url}: {str(e)}")
return False
def build_knowledge_base():
"""Build or update the knowledge base"""
global vector_store, kb_info
_, _embeddings = init_models()
try:
start_time = time.time()
documents = []
# Create folder in advance
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Connection': 'keep-alive',
}
# First check which URLs are accessible
available_urls = [url for url in URLS if check_url_availability(url, headers)]
if not available_urls:
raise HTTPException(
status_code=500,
detail="None of the provided URLs are accessible. Please check the domain and URLs."
)
print(f"Found {len(available_urls)} accessible URLs out of {len(URLS)}")
# Load documents with detailed logging and error handling
for url in available_urls:
try:
print(f"Attempting to load {url}")
loader = WebBaseLoader(
web_paths=[url],
header_template=headers,
requests_per_second=2,
timeout=30
)
docs = loader.load()
print(f"Successfully loaded {url}, got {len(docs)} documents")
if docs:
documents.extend(docs)
else:
# Try alternative loading method
response = requests.get(url, headers=headers, timeout=30)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Get main content, excluding navigation and footer
main_content = ' '.join([p.text for p in soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li'])])
if main_content:
from langchain_core.documents import Document
documents.append(Document(page_content=main_content, metadata={"source": url}))
print(f"Loaded {url} using alternative method")
except Exception as e:
print(f"Failed to load {url}: {str(e)}")
print(f"Full error: {traceback.format_exc()}")
continue
print(f"Total documents loaded: {len(documents)}")
if not documents:
error_msg = "No documents loaded! Check if the URLs are accessible and contain valid content."
print(error_msg)
raise HTTPException(status_code=500, detail=error_msg)
# Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
# Create vector store
vector_store = FAISS.from_documents(chunks, _embeddings)
vector_store.save_local(
folder_path=VECTOR_STORE_PATH,
index_name="index"
)
# Verify file creation
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
raise HTTPException(status_code=500, detail="FAISS index file not created!")
# Update info
kb_info.update({
'build_time': time.time() - start_time,
'size': sum(
os.path.getsize(os.path.join(VECTOR_STORE_PATH, f))
for f in ["index.faiss", "index.pkl"]
) / (1024 ** 2),
'version': datetime.now().strftime("%Y%m%d-%H%M%S")
})
# Upload to Hugging Face
upload_to_hf_dataset()
return {
"status": "success",
"message": "Knowledge base successfully created!",
"details": kb_info
}
except Exception as e:
error_msg = f"Knowledge base creation failed: {str(e)}"
print(error_msg)
print(traceback.format_exc())
raise HTTPException(status_code=500, detail=error_msg)
def load_knowledge_base():
"""Load the knowledge base from disk"""
global vector_store
if vector_store:
return vector_store
_, _embeddings = init_models()
try:
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
_embeddings,
allow_dangerous_deserialization=True
)
return vector_store
except Exception as e:
error_msg = f"Failed to load knowledge base: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return None
# --------------- API Endpoints ---------------
@app.get("/api/status") # Перемещаем статус на отдельный endpoint
async def status():
"""Status endpoint that shows app status"""
vector_store_exists = os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss"))
return {
"status": "running",
"knowledge_base_exists": vector_store_exists,
"kb_info": kb_info if vector_store_exists else None
}
# Удаляем или комментируем старый root endpoint
# @app.get("/")
# async def root():
# """Root endpoint that shows app status"""
# ...
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
@app.post("/build-kb", response_model=BuildKnowledgeBaseResponse)
async def build_kb_endpoint():
"""Endpoint to build/rebuild the knowledge base"""
return build_knowledge_base()
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
"""Endpoint to chat with the assistant"""
# Check if knowledge base exists
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
raise HTTPException(
status_code=400,
detail="Knowledge base not found. Please build it first with /build-kb"
)
# Use provided conversation ID or generate a new one
conversation_id = request.conversation_id or f"conv_{datetime.now().strftime('%Y%m%d%H%M%S')}"
try:
# Load models and knowledge base
_llm, _ = init_models()
_vector_store = load_knowledge_base()
if not _vector_store:
raise HTTPException(
status_code=500,
detail="Failed to load knowledge base"
)
# Retrieve context
context_docs = _vector_store.similarity_search(request.message)
context_text = "\n".join([d.page_content for d in context_docs])
# Generate response
prompt_template = PromptTemplate.from_template('''
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone).
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.
Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.
Also, offer free consultations if they are available and suitable for the user's request.
Answer professionally but in a friendly manner.
Example:
Q: How can I challenge the sanctions?
A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
Context: {context}
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Cite sources when possible
3. Offer contact options if unsure
''')
chain = prompt_template | _llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": request.message
})
# Log the interaction
log_interaction(request.message, response, context_text, conversation_id)
return {
"response": response,
"conversation_id": conversation_id
}
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
print(traceback.format_exc())
raise HTTPException(status_code=500, detail=error_msg)
# Initialize dataset integration at startup
@app.on_event("startup")
async def startup_event():
"""Initialize on startup"""
# Try to load existing knowledge base from Hugging Face
init_hf_dataset_integration()
# Preload embeddings model to reduce first-request latency
try:
global embeddings
if not embeddings:
embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large-instruct"
)
except Exception as e:
print(f"Warning: Failed to preload embeddings: {e}")
# Run the application
#if __name__ == "__main__":
# uvicorn.run("app:app", host="0.0.0.0", port=7860)
|