Doc-chat / app - Copy.py
Rulga's picture
Upload 10 files
ed07e8e verified
raw
history blame
9.25 kB
import os
import time
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
import requests
import json
# Логирует взаимодействие в JSON-файл
from datetime import datetime
def log_interaction(user_input: str, bot_response: str):
"""Логирует взаимодействие в JSON-файл"""
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"bot_response": bot_response
}
log_dir = "chat_history"
os.makedirs(log_dir, exist_ok=True)
log_path = os.path.join(log_dir, "chat_logs.json")
with open(log_path, "a") as f:
f.write(json.dumps(log_entry) + "\n")
#
# Page configuration
st.set_page_config(page_title="Status Law Assistant", page_icon="⚖️")
# Knowledge base info in session_state
if 'kb_info' not in st.session_state:
st.session_state.kb_info = {
'build_time': None,
'size': None
}
# Display title and knowledge base info
# st.title("www.Status.Law Legal Assistant")
st.markdown(
'''
<h1>
⚖️
<a href="https://status.law/" style="text-decoration: underline; color: blue; font-size: inherit;">
Status.Law
</a>
Legal Assistant
</h1>
''',
unsafe_allow_html=True
)
if st.session_state.kb_info['build_time'] and st.session_state.kb_info['size']:
st.caption(f"(Knowledge base build time: {st.session_state.kb_info['build_time']:.2f} seconds, "
f"size: {st.session_state.kb_info['size']:.2f} MB)")
# Path to store vector database
VECTOR_STORE_PATH = "vector_store"
# Создание папки истории, если она не существует
if not os.path.exists("chat_history"):
os.makedirs("chat_history")
# Website URLs
urls = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-of-protection-against-extradition",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection"
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Load secrets
try:
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
except Exception as e:
st.error("Error loading secrets. Please check your configuration.")
st.stop()
# Initialize models
@st.cache_resource
def init_models():
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=GROQ_API_KEY
)
embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large-instruct"
)
return llm, embeddings
# Build knowledge base
def build_knowledge_base(embeddings):
start_time = time.time()
documents = []
with st.status("Loading website content...") as status:
for url in urls:
try:
loader = WebBaseLoader(url)
docs = loader.load()
documents.extend(docs)
status.update(label=f"Loaded {url}")
except Exception as e:
st.error(f"Error loading {url}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
vector_store = FAISS.from_documents(chunks, embeddings)
vector_store.save_local(VECTOR_STORE_PATH)
end_time = time.time()
build_time = end_time - start_time
# Calculate knowledge base size
total_size = 0
for path, dirs, files in os.walk(VECTOR_STORE_PATH):
for f in files:
fp = os.path.join(path, f)
total_size += os.path.getsize(fp)
size_mb = total_size / (1024 * 1024)
# Save knowledge base info
st.session_state.kb_info['build_time'] = build_time
st.session_state.kb_info['size'] = size_mb
st.success(f"""
Knowledge base created successfully:
- Time taken: {build_time:.2f} seconds
- Size: {size_mb:.2f} MB
- Number of chunks: {len(chunks)}
""")
return vector_store
# Main function
def main():
# Initialize models
llm, embeddings = init_models()
# Check if knowledge base exists
if not os.path.exists(VECTOR_STORE_PATH):
st.warning("Knowledge base not found.")
if st.button("Create Knowledge Base"):
vector_store = build_knowledge_base(embeddings)
st.session_state.vector_store = vector_store
st.rerun()
else:
if 'vector_store' not in st.session_state:
st.session_state.vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
# Chat mode
if 'vector_store' in st.session_state:
if 'messages' not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
st.chat_message("user").write(message["question"])
st.chat_message("assistant").write(message["answer"])
# User input
if question := st.chat_input("Ask your question"):
st.chat_message("user").write(question)
# Retrieve context and generate response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
context = st.session_state.vector_store.similarity_search(question)
context_text = "\n".join([doc.page_content for doc in context])
prompt = PromptTemplate.from_template("""
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone).
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information.
Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options.
Also, offer free consultations if they are available and suitable for the user's request.
Answer professionally but in a friendly manner.
Example:
Q: How can I challenge the sanctions?
A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
Context: {context}
Question: {question}
""")
chain = prompt | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": question
})
st.write(response)
# В блоке генерации ответа (после st.write(response))
log_interaction(question, response)
# Save chat history
st.session_state.messages.append({
"question": question,
"answer": response
})
if __name__ == "__main__":
main()