Add logging and knowledge base configuration to app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,14 @@ import traceback
|
|
6 |
import warnings
|
7 |
from datetime import datetime
|
8 |
from typing import Optional, List, Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
import requests
|
11 |
from bs4 import BeautifulSoup
|
@@ -32,6 +40,24 @@ load_dotenv()
|
|
32 |
# Initialize FastAPI app
|
33 |
app = FastAPI(title="Status Law Assistant API")
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Models for request/response
|
36 |
class ChatRequest(BaseModel):
|
37 |
message: str
|
@@ -144,70 +170,105 @@ def load_url_content(url: str) -> List[Document]:
|
|
144 |
|
145 |
def build_knowledge_base(embeddings):
|
146 |
try:
|
|
|
|
|
147 |
documents = []
|
148 |
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
149 |
|
150 |
-
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
# Load content from available URLs
|
157 |
for url in available_urls:
|
158 |
try:
|
159 |
-
|
160 |
docs = load_url_content(url)
|
161 |
if docs:
|
162 |
documents.extend(docs)
|
163 |
-
|
|
|
164 |
else:
|
165 |
-
|
166 |
except Exception as e:
|
167 |
-
|
168 |
continue
|
169 |
|
170 |
if not documents:
|
|
|
|
|
|
|
171 |
raise Exception("No documents were successfully loaded!")
|
172 |
|
173 |
-
|
174 |
|
175 |
text_splitter = RecursiveCharacterTextSplitter(
|
176 |
-
chunk_size=
|
177 |
-
chunk_overlap=
|
178 |
)
|
179 |
-
|
180 |
chunks = text_splitter.split_documents(documents)
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
return vector_store
|
|
|
190 |
except Exception as e:
|
191 |
-
|
192 |
traceback.print_exc()
|
193 |
raise Exception(f"Knowledge base creation failed: {str(e)}")
|
194 |
|
195 |
# Initialize models and knowledge base on startup
|
196 |
-
|
197 |
-
|
|
|
198 |
|
199 |
-
if os.path.exists(VECTOR_STORE_PATH):
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
208 |
|
209 |
-
if vector_store is None:
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
# API endpoints
|
213 |
# API endpoints
|
@@ -260,14 +321,27 @@ async def rebuild_knowledge_base():
|
|
260 |
except Exception as e:
|
261 |
raise HTTPException(status_code=500, detail=str(e))
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
def log_interaction(user_input: str, bot_response: str, context: str):
|
264 |
try:
|
|
|
265 |
log_entry = {
|
266 |
"timestamp": datetime.now().isoformat(),
|
267 |
"user_input": user_input,
|
268 |
"bot_response": bot_response,
|
269 |
"context": context[:500],
|
270 |
-
"kb_version": "
|
271 |
}
|
272 |
|
273 |
os.makedirs("chat_history", exist_ok=True)
|
@@ -275,9 +349,9 @@ def log_interaction(user_input: str, bot_response: str, context: str):
|
|
275 |
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
276 |
|
277 |
except Exception as e:
|
278 |
-
|
279 |
-
|
280 |
|
281 |
if __name__ == "__main__":
|
282 |
import uvicorn
|
283 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
6 |
import warnings
|
7 |
from datetime import datetime
|
8 |
from typing import Optional, List, Dict
|
9 |
+
import logging
|
10 |
+
|
11 |
+
# Настройка логгера
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
16 |
+
)
|
17 |
|
18 |
import requests
|
19 |
from bs4 import BeautifulSoup
|
|
|
40 |
# Initialize FastAPI app
|
41 |
app = FastAPI(title="Status Law Assistant API")
|
42 |
|
43 |
+
# Конфигурация базы знаний
|
44 |
+
KB_CONFIG_PATH = "vector_store/kb_config.json"
|
45 |
+
|
46 |
+
def get_kb_config():
|
47 |
+
if os.path.exists(KB_CONFIG_PATH):
|
48 |
+
with open(KB_CONFIG_PATH, 'r') as f:
|
49 |
+
return json.load(f)
|
50 |
+
return {
|
51 |
+
"version": 1,
|
52 |
+
"processed_urls": [],
|
53 |
+
"last_update": None
|
54 |
+
}
|
55 |
+
|
56 |
+
def save_kb_config(config):
|
57 |
+
os.makedirs(os.path.dirname(KB_CONFIG_PATH), exist_ok=True)
|
58 |
+
with open(KB_CONFIG_PATH, 'w') as f:
|
59 |
+
json.dump(config, f)
|
60 |
+
|
61 |
# Models for request/response
|
62 |
class ChatRequest(BaseModel):
|
63 |
message: str
|
|
|
170 |
|
171 |
def build_knowledge_base(embeddings):
|
172 |
try:
|
173 |
+
logger.info("Starting knowledge base construction...")
|
174 |
+
kb_config = get_kb_config()
|
175 |
documents = []
|
176 |
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
|
177 |
|
178 |
+
# Определяем URL для обработки
|
179 |
+
urls_to_process = [url for url in URLS if url not in kb_config["processed_urls"]]
|
180 |
|
181 |
+
if not urls_to_process:
|
182 |
+
logger.info("No new URLs to process")
|
183 |
+
return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
184 |
+
|
185 |
+
logger.info(f"Processing {len(urls_to_process)} new URLs")
|
186 |
+
|
187 |
+
available_urls = [url for url in urls_to_process if check_url_availability(url)]
|
188 |
+
logger.info(f"Accessible URLs: {len(available_urls)} out of {len(urls_to_process)}")
|
189 |
|
|
|
190 |
for url in available_urls:
|
191 |
try:
|
192 |
+
logger.info(f"Processing {url}")
|
193 |
docs = load_url_content(url)
|
194 |
if docs:
|
195 |
documents.extend(docs)
|
196 |
+
kb_config["processed_urls"].append(url)
|
197 |
+
logger.info(f"Successfully loaded content from {url}")
|
198 |
else:
|
199 |
+
logger.warning(f"No content extracted from {url}")
|
200 |
except Exception as e:
|
201 |
+
logger.error(f"Failed to process {url}: {str(e)}")
|
202 |
continue
|
203 |
|
204 |
if not documents:
|
205 |
+
if kb_config["processed_urls"]:
|
206 |
+
logger.info("No new documents to add, loading existing vector store")
|
207 |
+
return FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
208 |
raise Exception("No documents were successfully loaded!")
|
209 |
|
210 |
+
logger.info(f"Total new documents loaded: {len(documents)}")
|
211 |
|
212 |
text_splitter = RecursiveCharacterTextSplitter(
|
213 |
+
chunk_size=1000,
|
214 |
+
chunk_overlap=50
|
215 |
)
|
216 |
+
logger.info("Splitting documents into chunks...")
|
217 |
chunks = text_splitter.split_documents(documents)
|
218 |
+
logger.info(f"Created {len(chunks)} chunks")
|
219 |
|
220 |
+
# Если есть существующая база знаний, добавляем к ней
|
221 |
+
if os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
|
222 |
+
logger.info("Loading existing vector store...")
|
223 |
+
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
224 |
+
logger.info("Adding new documents to existing vector store...")
|
225 |
+
vector_store.add_documents(chunks)
|
226 |
+
else:
|
227 |
+
logger.info("Creating new vector store...")
|
228 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
229 |
|
230 |
+
logger.info("Saving vector store...")
|
231 |
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
|
232 |
|
233 |
+
# Обновляем конфигурацию
|
234 |
+
kb_config["version"] += 1
|
235 |
+
kb_config["last_update"] = datetime.now().isoformat()
|
236 |
+
save_kb_config(kb_config)
|
237 |
+
|
238 |
+
logger.info(f"Knowledge base updated to version {kb_config['version']}")
|
239 |
return vector_store
|
240 |
+
|
241 |
except Exception as e:
|
242 |
+
logger.error(f"Error in build_knowledge_base: {str(e)}")
|
243 |
traceback.print_exc()
|
244 |
raise Exception(f"Knowledge base creation failed: {str(e)}")
|
245 |
|
246 |
# Initialize models and knowledge base on startup
|
247 |
+
try:
|
248 |
+
llm, embeddings = init_models()
|
249 |
+
vector_store = None
|
250 |
|
251 |
+
if os.path.exists(VECTOR_STORE_PATH):
|
252 |
+
try:
|
253 |
+
vector_store = FAISS.load_local(
|
254 |
+
VECTOR_STORE_PATH,
|
255 |
+
embeddings,
|
256 |
+
allow_dangerous_deserialization=True
|
257 |
+
)
|
258 |
+
logger.info("Successfully loaded existing knowledge base")
|
259 |
+
except Exception as e:
|
260 |
+
logger.error(f"Failed to load existing knowledge base: {str(e)}")
|
261 |
+
logger.error(traceback.format_exc())
|
262 |
|
263 |
+
if vector_store is None:
|
264 |
+
logger.info("Building new knowledge base...")
|
265 |
+
vector_store = build_knowledge_base(embeddings)
|
266 |
+
logger.info("Knowledge base built successfully")
|
267 |
+
|
268 |
+
except Exception as e:
|
269 |
+
logger.error(f"Critical initialization error: {str(e)}")
|
270 |
+
logger.error(traceback.format_exc())
|
271 |
+
raise
|
272 |
|
273 |
# API endpoints
|
274 |
# API endpoints
|
|
|
321 |
except Exception as e:
|
322 |
raise HTTPException(status_code=500, detail=str(e))
|
323 |
|
324 |
+
@app.get("/kb-status")
|
325 |
+
async def get_kb_status():
|
326 |
+
"""Get current knowledge base status"""
|
327 |
+
kb_config = get_kb_config()
|
328 |
+
return {
|
329 |
+
"version": kb_config["version"],
|
330 |
+
"total_urls": len(URLS),
|
331 |
+
"processed_urls": len(kb_config["processed_urls"]),
|
332 |
+
"pending_urls": len([url for url in URLS if url not in kb_config["processed_urls"]]),
|
333 |
+
"last_update": kb_config["last_update"]
|
334 |
+
}
|
335 |
+
|
336 |
def log_interaction(user_input: str, bot_response: str, context: str):
|
337 |
try:
|
338 |
+
kb_config = get_kb_config()
|
339 |
log_entry = {
|
340 |
"timestamp": datetime.now().isoformat(),
|
341 |
"user_input": user_input,
|
342 |
"bot_response": bot_response,
|
343 |
"context": context[:500],
|
344 |
+
"kb_version": kb_config["version"] # Используем актуальную версию
|
345 |
}
|
346 |
|
347 |
os.makedirs("chat_history", exist_ok=True)
|
|
|
349 |
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
350 |
|
351 |
except Exception as e:
|
352 |
+
logger.error(f"Logging error: {str(e)}")
|
353 |
+
logger.error(traceback.format_exc())
|
354 |
|
355 |
if __name__ == "__main__":
|
356 |
import uvicorn
|
357 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|