import os #os.environ["TRANSFORMERS_CACHE"] = "cache/huggingface" os.environ["HF_HOME"] = "cache/huggingface" os.environ["HUGGINGFACE_HUB_CACHE"] = "cache/huggingface" os.environ["XDG_CACHE_HOME"] = "cache" os.makedirs("cache/huggingface", exist_ok=True) import time import uvicorn from fastapi import FastAPI, HTTPException, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import WebBaseLoader from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from datetime import datetime import json import traceback from typing import Dict, List, Optional from pydantic import BaseModel from huggingface_hub import Repository, snapshot_download import requests from bs4 import BeautifulSoup # Initialize environment variables load_dotenv() # Constants for paths and URLs VECTOR_STORE_PATH = "vector_store" LOCAL_CHAT_HISTORY_PATH = "chat_history" DATA_SNAPSHOT_PATH = "data_snapshot" HF_DATASET_REPO = "Rulga/LS_chat" URLS = [ "https://status.law", "https://status.law/about", "https://status.law/careers", "https://status.law/tariffs-for-services-of-protection-against-extradition", "https://status.law/challenging-sanctions", "https://status.law/law-firm-contact-legal-protection", "https://status.law/cross-border-banking-legal-issues", "https://status.law/extradition-defense", "https://status.law/international-prosecution-protection", "https://status.law/interpol-red-notice-removal", "https://status.law/practice-areas", "https://status.law/reputation-protection", "https://status.law/faq" ] # Initialize the FastAPI app app = FastAPI(title="Status Law Assistant API") # Remove the static files mounting since we don't need it # app.mount("/static", StaticFiles(directory="static"), name="static") # Web interface route @app.get("/web", response_class=HTMLResponse) async def web_interface(): with open("index.html", "r", encoding="utf-8") as f: return HTMLResponse(content=f.read()) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Define request and response models class ChatRequest(BaseModel): message: str conversation_id: Optional[str] = None class ChatResponse(BaseModel): response: str conversation_id: str class BuildKnowledgeBaseResponse(BaseModel): status: str message: str details: Optional[Dict] = None # Global variables for models and knowledge base llm = None embeddings = None vector_store = None kb_info = { 'build_time': None, 'size': None, 'version': '1.1' } # --------------- Hugging Face Dataset Integration --------------- def init_hf_dataset_integration(): """Initialize integration with Hugging Face dataset for persistence""" try: # Download the latest snapshot of the dataset if it exists if os.getenv("HF_TOKEN"): # With authentication if token provided snapshot_download( repo_id=HF_DATASET_REPO, repo_type="dataset", local_dir="./data_snapshot", token=os.getenv("HF_TOKEN") ) else: # Try without authentication for public datasets snapshot_download( repo_id=HF_DATASET_REPO, repo_type="dataset", local_dir="./data_snapshot" ) # Check if vector store exists in the downloaded data if os.path.exists("./data_snapshot/vector_store/index.faiss"): # Copy to the local vector store path os.makedirs(VECTOR_STORE_PATH, exist_ok=True) os.system(f"cp -r ./data_snapshot/vector_store/* {VECTOR_STORE_PATH}/") return True except Exception as e: print(f"Error downloading dataset: {e}") return False def upload_to_hf_dataset(): """Upload the vector store and chat history to the Hugging Face dataset""" if not os.getenv("HF_TOKEN"): print("HF_TOKEN not set, cannot upload to Hugging Face") return False try: # Clone the repository repo = Repository( local_dir="./data_upload", clone_from=HF_DATASET_REPO, repo_type="dataset", token=os.getenv("HF_TOKEN") ) # Copy the vector store files if os.path.exists(f"{VECTOR_STORE_PATH}/index.faiss"): os.makedirs("./data_upload/vector_store", exist_ok=True) os.system(f"cp -r {VECTOR_STORE_PATH}/* ./data_upload/vector_store/") # Copy the chat history if os.path.exists(f"{LOCAL_CHAT_HISTORY_PATH}/chat_logs.json"): os.makedirs("./data_upload/chat_history", exist_ok=True) os.system(f"cp -r {LOCAL_CHAT_HISTORY_PATH}/* ./data_upload/chat_history/") # Push to Hugging Face repo.push_to_hub(commit_message="Update vector store and chat history") return True except Exception as e: print(f"Error uploading to dataset: {e}") return False # --------------- Enhanced Logging --------------- def log_interaction(user_input: str, bot_response: str, context: str, conversation_id: str): """Log interactions with error handling""" try: log_entry = { "timestamp": datetime.now().isoformat(), "conversation_id": conversation_id, "user_input": user_input, "bot_response": bot_response, "context": context[:500] if context else "", "kb_version": kb_info['version'] } os.makedirs(LOCAL_CHAT_HISTORY_PATH, exist_ok=True) log_path = os.path.join(LOCAL_CHAT_HISTORY_PATH, "chat_logs.json") with open(log_path, "a", encoding="utf-8") as f: f.write(json.dumps(log_entry, ensure_ascii=False) + "\n") # Upload to Hugging Face after logging upload_to_hf_dataset() except Exception as e: print(f"Logging error: {str(e)}") print(traceback.format_exc()) # --------------- Model Initialization --------------- def init_models(): """Initialize AI models""" global llm, embeddings if not llm: try: llm = ChatGroq( model_name="llama-3.3-70b-versatile", temperature=0.6, api_key=os.getenv("GROQ_API_KEY") ) except Exception as e: print(f"LLM initialization failed: {str(e)}") raise HTTPException(status_code=500, detail=f"LLM initialization failed: {str(e)}") if not embeddings: try: embeddings = HuggingFaceEmbeddings( model_name="intfloat/multilingual-e5-large-instruct" ) except Exception as e: print(f"Embeddings initialization failed: {str(e)}") raise HTTPException(status_code=500, detail=f"Embeddings initialization failed: {str(e)}") return llm, embeddings # --------------- Knowledge Base Management --------------- def check_url_availability(url: str, headers: dict) -> bool: """Check if URL is accessible""" try: response = requests.head(url, headers=headers, timeout=10) return response.status_code == 200 except Exception as e: print(f"URL check failed for {url}: {str(e)}") return False def build_knowledge_base(): """Build or update the knowledge base""" global vector_store, kb_info _, _embeddings = init_models() try: start_time = time.time() documents = [] # Create folder in advance os.makedirs(VECTOR_STORE_PATH, exist_ok=True) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Connection': 'keep-alive', } # First check which URLs are accessible available_urls = [url for url in URLS if check_url_availability(url, headers)] if not available_urls: raise HTTPException( status_code=500, detail="None of the provided URLs are accessible. Please check the domain and URLs." ) print(f"Found {len(available_urls)} accessible URLs out of {len(URLS)}") # Load documents with detailed logging and error handling for url in available_urls: try: print(f"Attempting to load {url}") loader = WebBaseLoader( web_paths=[url], header_template=headers, requests_per_second=2, timeout=30 ) docs = loader.load() print(f"Successfully loaded {url}, got {len(docs)} documents") if docs: documents.extend(docs) else: # Try alternative loading method response = requests.get(url, headers=headers, timeout=30) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Get main content, excluding navigation and footer main_content = ' '.join([p.text for p in soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li'])]) if main_content: from langchain_core.documents import Document documents.append(Document(page_content=main_content, metadata={"source": url})) print(f"Loaded {url} using alternative method") except Exception as e: print(f"Failed to load {url}: {str(e)}") print(f"Full error: {traceback.format_exc()}") continue print(f"Total documents loaded: {len(documents)}") if not documents: error_msg = "No documents loaded! Check if the URLs are accessible and contain valid content." print(error_msg) raise HTTPException(status_code=500, detail=error_msg) # Split into chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100 ) chunks = text_splitter.split_documents(documents) # Create vector store vector_store = FAISS.from_documents(chunks, _embeddings) vector_store.save_local( folder_path=VECTOR_STORE_PATH, index_name="index" ) # Verify file creation if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")): raise HTTPException(status_code=500, detail="FAISS index file not created!") # Update info kb_info.update({ 'build_time': time.time() - start_time, 'size': sum( os.path.getsize(os.path.join(VECTOR_STORE_PATH, f)) for f in ["index.faiss", "index.pkl"] ) / (1024 ** 2), 'version': datetime.now().strftime("%Y%m%d-%H%M%S") }) # Upload to Hugging Face upload_to_hf_dataset() return { "status": "success", "message": "Knowledge base successfully created!", "details": kb_info } except Exception as e: error_msg = f"Knowledge base creation failed: {str(e)}" print(error_msg) print(traceback.format_exc()) raise HTTPException(status_code=500, detail=error_msg) def load_knowledge_base(): """Load the knowledge base from disk""" global vector_store if vector_store: return vector_store _, _embeddings = init_models() try: vector_store = FAISS.load_local( VECTOR_STORE_PATH, _embeddings, allow_dangerous_deserialization=True ) return vector_store except Exception as e: error_msg = f"Failed to load knowledge base: {str(e)}" print(error_msg) print(traceback.format_exc()) return None # --------------- API Endpoints --------------- @app.get("/api/status") # Перемещаем статус на отдельный endpoint async def status(): """Status endpoint that shows app status""" vector_store_exists = os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")) return { "status": "running", "knowledge_base_exists": vector_store_exists, "kb_info": kb_info if vector_store_exists else None } # Удаляем или комментируем старый root endpoint # @app.get("/") # async def root(): # """Root endpoint that shows app status""" # ... @app.get("/health") async def health_check(): """Health check endpoint""" return {"status": "healthy"} @app.post("/build-kb", response_model=BuildKnowledgeBaseResponse) async def build_kb_endpoint(): """Endpoint to build/rebuild the knowledge base""" return build_knowledge_base() @app.post("/chat", response_model=ChatResponse) async def chat_endpoint(request: ChatRequest): """Endpoint to chat with the assistant""" # Check if knowledge base exists if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")): raise HTTPException( status_code=400, detail="Knowledge base not found. Please build it first with /build-kb" ) # Use provided conversation ID or generate a new one conversation_id = request.conversation_id or f"conv_{datetime.now().strftime('%Y%m%d%H%M%S')}" try: # Load models and knowledge base _llm, _ = init_models() _vector_store = load_knowledge_base() if not _vector_store: raise HTTPException( status_code=500, detail="Failed to load knowledge base" ) # Retrieve context context_docs = _vector_store.similarity_search(request.message) context_text = "\n".join([d.page_content for d in context_docs]) # Generate response prompt_template = PromptTemplate.from_template(''' You are a helpful and polite legal assistant at Status Law. You answer in the language in which the question was asked. Answer the question based on the context provided. If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels: - For all users: +32465594521 (landline phone). - For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO). - Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/). If the user has questions about specific services and their costs, suggest they visit the page https://status.law/tariffs-for-services-of-protection-against-extradition-and-international-prosecution/ for detailed information. Ask the user additional questions to understand which service to recommend and provide an estimated cost. For example, clarify their situation and needs to suggest the most appropriate options. Also, offer free consultations if they are available and suitable for the user's request. Answer professionally but in a friendly manner. Example: Q: How can I challenge the sanctions? A: To challenge the sanctions, you should consult with our legal team, who specialize in this area. Please contact us directly for detailed advice. You can fill out our contact form here: [Contact Form](https://status.law/law-firm-contact-legal-protection/). Context: {context} Question: {question} Response Guidelines: 1. Answer in the user's language 2. Cite sources when possible 3. Offer contact options if unsure ''') chain = prompt_template | _llm | StrOutputParser() response = chain.invoke({ "context": context_text, "question": request.message }) # Log the interaction log_interaction(request.message, response, context_text, conversation_id) return { "response": response, "conversation_id": conversation_id } except Exception as e: error_msg = f"Error generating response: {str(e)}" print(error_msg) print(traceback.format_exc()) raise HTTPException(status_code=500, detail=error_msg) # Initialize dataset integration at startup @app.on_event("startup") async def startup_event(): """Initialize on startup""" # Try to load existing knowledge base from Hugging Face init_hf_dataset_integration() # Preload embeddings model to reduce first-request latency try: global embeddings if not embeddings: embeddings = HuggingFaceEmbeddings( model_name="intfloat/multilingual-e5-large-instruct" ) except Exception as e: print(f"Warning: Failed to preload embeddings: {e}") # Run the application #if __name__ == "__main__": # uvicorn.run("app:app", host="0.0.0.0", port=7860)