Spaces:
Sleeping
Sleeping
- app.py +137 -84
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import streamlit as st
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
from langchain_groq import ChatGroq
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
@@ -11,76 +15,84 @@ from langchain_core.output_parsers import StrOutputParser
|
|
11 |
from langchain_core.runnables import RunnableLambda
|
12 |
from requests.exceptions import RequestException, Timeout
|
13 |
|
14 |
-
#
|
15 |
st.set_page_config(page_title="Legal Chatbot", page_icon="🤖")
|
16 |
|
17 |
-
#
|
18 |
if os.path.exists(".env"):
|
19 |
load_dotenv(verbose=True)
|
20 |
|
21 |
-
#
|
22 |
try:
|
23 |
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
|
24 |
USER_AGENT = st.secrets["USER_AGENT"]
|
25 |
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
|
|
|
|
26 |
except FileNotFoundError:
|
27 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
28 |
USER_AGENT = os.getenv("USER_AGENT")
|
29 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
-
if not all([GROQ_API_KEY, USER_AGENT, OPENAI_API_KEY]):
|
33 |
-
st.error("
|
34 |
st.stop()
|
35 |
|
36 |
-
#
|
37 |
try:
|
38 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.6, api_key=GROQ_API_KEY)
|
39 |
except Exception as e:
|
40 |
-
st.error(f"
|
41 |
st.stop()
|
42 |
|
43 |
-
#
|
44 |
embeddings_model = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large-instruct")
|
45 |
|
46 |
-
#
|
47 |
urls = [
|
48 |
-
"https://status.law",
|
49 |
"https://status.law/about",
|
50 |
"https://status.law/careers",
|
51 |
"https://status.law/challenging-sanctions",
|
52 |
-
"https://status.law/contact",
|
53 |
-
"https://status.law/cross-border-banking-legal-issues",
|
54 |
-
"https://status.law/extradition-defense",
|
55 |
-
"https://status.law/international-prosecution-protection",
|
56 |
-
"https://status.law/interpol-red-notice-removal",
|
57 |
-
"https://status.law/practice-areas",
|
58 |
"https://status.law/reputation-protection",
|
59 |
"https://status.law/faq"
|
60 |
]
|
61 |
|
62 |
-
#
|
63 |
-
VECTOR_STORE_PATH = "vector_store"
|
|
|
64 |
|
65 |
-
#
|
66 |
def build_knowledge_base():
|
67 |
documents = []
|
68 |
for url in urls:
|
69 |
try:
|
70 |
loader = WebBaseLoader(url)
|
71 |
documents.extend(loader.load())
|
|
|
72 |
except (RequestException, Timeout) as e:
|
73 |
-
st.write(f"[ERROR]
|
74 |
-
|
75 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
76 |
chunks = text_splitter.split_documents(documents)
|
77 |
-
|
|
|
78 |
vector_store = FAISS.from_documents(chunks, embeddings_model)
|
79 |
vector_store.save_local(VECTOR_STORE_PATH)
|
80 |
-
|
|
|
81 |
return vector_store
|
82 |
|
83 |
-
#
|
84 |
def load_knowledge_base():
|
85 |
if os.path.exists(VECTOR_STORE_PATH):
|
86 |
return FAISS.load_local(
|
@@ -90,66 +102,107 @@ def load_knowledge_base():
|
|
90 |
)
|
91 |
return None
|
92 |
|
93 |
-
#
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
st.session_state.vector_store = load_knowledge_base()
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
if
|
101 |
-
|
102 |
-
if st.button("Создать базу знаний"):
|
103 |
-
with st.spinner("Создание базы знаний..."):
|
104 |
st.session_state.vector_store = build_knowledge_base()
|
105 |
-
st.success("
|
106 |
-
st.rerun()
|
107 |
else:
|
108 |
-
st.write("
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
import smtplib
|
4 |
import streamlit as st
|
5 |
+
from email.mime.multipart import MIMEMultipart
|
6 |
+
from email.mime.text import MIMEText
|
7 |
from dotenv import load_dotenv
|
8 |
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
15 |
from langchain_core.runnables import RunnableLambda
|
16 |
from requests.exceptions import RequestException, Timeout
|
17 |
|
18 |
+
# Streamlit page configuration
|
19 |
st.set_page_config(page_title="Legal Chatbot", page_icon="🤖")
|
20 |
|
21 |
+
# Load environment variables
|
22 |
if os.path.exists(".env"):
|
23 |
load_dotenv(verbose=True)
|
24 |
|
25 |
+
# Load API keys
|
26 |
try:
|
27 |
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
|
28 |
USER_AGENT = st.secrets["USER_AGENT"]
|
29 |
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
30 |
+
EMAIL_SENDER = st.secrets["EMAIL_SENDER"]
|
31 |
+
EMAIL_PASSWORD = st.secrets["EMAIL_PASSWORD"]
|
32 |
except FileNotFoundError:
|
33 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
34 |
USER_AGENT = os.getenv("USER_AGENT")
|
35 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
36 |
+
EMAIL_SENDER = os.getenv("EMAIL_SENDER")
|
37 |
+
EMAIL_PASSWORD = os.getenv("EMAIL_PASSWORD")
|
38 |
|
39 |
+
# Check if API keys are set
|
40 |
+
if not all([GROQ_API_KEY, USER_AGENT, OPENAI_API_KEY, EMAIL_SENDER, EMAIL_PASSWORD]):
|
41 |
+
st.error("Error: Missing required environment variables.")
|
42 |
st.stop()
|
43 |
|
44 |
+
# Initialize LLM
|
45 |
try:
|
46 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.6, api_key=GROQ_API_KEY)
|
47 |
except Exception as e:
|
48 |
+
st.error(f"LLM initialization failed: {e}")
|
49 |
st.stop()
|
50 |
|
51 |
+
# Initialize embeddings model
|
52 |
embeddings_model = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large-instruct")
|
53 |
|
54 |
+
# List of website pages for knowledge base
|
55 |
urls = [
|
56 |
+
"https://status.law",
|
57 |
"https://status.law/about",
|
58 |
"https://status.law/careers",
|
59 |
"https://status.law/challenging-sanctions",
|
60 |
+
"https://status.law/contact",
|
61 |
+
"https://status.law/cross-border-banking-legal-issues",
|
62 |
+
"https://status.law/extradition-defense",
|
63 |
+
"https://status.law/international-prosecution-protection",
|
64 |
+
"https://status.law/interpol-red-notice-removal",
|
65 |
+
"https://status.law/practice-areas",
|
66 |
"https://status.law/reputation-protection",
|
67 |
"https://status.law/faq"
|
68 |
]
|
69 |
|
70 |
+
# Path to knowledge base storage
|
71 |
+
VECTOR_STORE_PATH = "storage/vector_store"
|
72 |
+
HISTORY_PATH = "storage/chat_history.json"
|
73 |
|
74 |
+
# Function to build knowledge base
|
75 |
def build_knowledge_base():
|
76 |
documents = []
|
77 |
for url in urls:
|
78 |
try:
|
79 |
loader = WebBaseLoader(url)
|
80 |
documents.extend(loader.load())
|
81 |
+
st.write(f"[INFO] Loaded content from {url}")
|
82 |
except (RequestException, Timeout) as e:
|
83 |
+
st.write(f"[ERROR] Failed to load {url}: {e}")
|
84 |
+
|
85 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
86 |
chunks = text_splitter.split_documents(documents)
|
87 |
+
st.write(f"[INFO] Split into {len(chunks)} chunks")
|
88 |
+
|
89 |
vector_store = FAISS.from_documents(chunks, embeddings_model)
|
90 |
vector_store.save_local(VECTOR_STORE_PATH)
|
91 |
+
|
92 |
+
st.write("[INFO] Knowledge base successfully created and saved")
|
93 |
return vector_store
|
94 |
|
95 |
+
# Function to load existing knowledge base
|
96 |
def load_knowledge_base():
|
97 |
if os.path.exists(VECTOR_STORE_PATH):
|
98 |
return FAISS.load_local(
|
|
|
102 |
)
|
103 |
return None
|
104 |
|
105 |
+
# Function to load chat history
|
106 |
+
def load_history():
|
107 |
+
if os.path.exists(HISTORY_PATH):
|
108 |
+
with open(HISTORY_PATH, "r", encoding="utf-8") as file:
|
109 |
+
return json.load(file)
|
110 |
+
return []
|
111 |
+
|
112 |
+
# Function to save chat history
|
113 |
+
def save_history(history):
|
114 |
+
with open(HISTORY_PATH, "w", encoding="utf-8") as file:
|
115 |
+
json.dump(history, file, ensure_ascii=False, indent=4)
|
116 |
+
|
117 |
+
# Function to send chat history via email
|
118 |
+
def send_email(recipient_email, subject, message):
|
119 |
+
try:
|
120 |
+
msg = MIMEMultipart()
|
121 |
+
msg["From"] = EMAIL_SENDER
|
122 |
+
msg["To"] = recipient_email
|
123 |
+
msg["Subject"] = subject
|
124 |
+
msg.attach(MIMEText(message, "plain"))
|
125 |
+
|
126 |
+
server = smtplib.SMTP("smtp.gmail.com", 587)
|
127 |
+
server.starttls()
|
128 |
+
server.login(EMAIL_SENDER, EMAIL_PASSWORD)
|
129 |
+
server.send_message(msg)
|
130 |
+
server.quit()
|
131 |
+
|
132 |
+
return True
|
133 |
+
except Exception as e:
|
134 |
+
st.error(f"Email sending error: {e}")
|
135 |
+
return False
|
136 |
+
|
137 |
+
# Load or create knowledge base
|
138 |
+
if "vector_store" not in st.session_state:
|
139 |
st.session_state.vector_store = load_knowledge_base()
|
140 |
|
141 |
+
# Prompt to create knowledge base if missing
|
142 |
+
if st.session_state.vector_store is None:
|
143 |
+
st.write("Knowledge base not found. Click the button to generate it.")
|
144 |
+
if st.button("Generate Knowledge Base"):
|
145 |
+
with st.spinner("Building knowledge base..."):
|
|
|
|
|
146 |
st.session_state.vector_store = build_knowledge_base()
|
147 |
+
st.success("Knowledge base successfully created!")
|
148 |
+
st.rerun()
|
149 |
else:
|
150 |
+
st.write("Knowledge base loaded. You can ask questions.")
|
151 |
+
|
152 |
+
# Chatbot prompt template
|
153 |
+
template = """
|
154 |
+
You are a helpful legal assistant answering questions based on information from status.law.
|
155 |
+
Answer accurately and concisely.
|
156 |
+
Question: {question}
|
157 |
+
Only use the provided context to answer the question.
|
158 |
+
Context: {context}
|
159 |
+
"""
|
160 |
+
prompt = PromptTemplate.from_template(template)
|
161 |
+
|
162 |
+
# Initialize processing chain
|
163 |
+
if "chain" not in st.session_state:
|
164 |
+
st.session_state.chain = (
|
165 |
+
RunnableLambda(lambda x: {"context": x["context"], "question": x["question"]})
|
166 |
+
| prompt
|
167 |
+
| llm
|
168 |
+
| StrOutputParser()
|
169 |
+
)
|
170 |
+
|
171 |
+
chain = st.session_state.chain
|
172 |
+
|
173 |
+
# Load chat history
|
174 |
+
if "message_history" not in st.session_state:
|
175 |
+
st.session_state.message_history = load_history()
|
176 |
+
|
177 |
+
# Chat input
|
178 |
+
user_input = st.text_input("Enter your question:")
|
179 |
+
if st.button("Send") and user_input:
|
180 |
+
vector_store = st.session_state.vector_store
|
181 |
+
retrieved_docs = vector_store.similarity_search(user_input)
|
182 |
+
context_text = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
183 |
+
|
184 |
+
response = chain.invoke({"question": user_input, "context": context_text})
|
185 |
+
|
186 |
+
# Save to session and persist history
|
187 |
+
st.session_state.message_history.append({"question": user_input, "answer": response})
|
188 |
+
save_history(st.session_state.message_history)
|
189 |
+
|
190 |
+
st.write(response)
|
191 |
+
|
192 |
+
# Display chat history
|
193 |
+
if st.session_state.message_history:
|
194 |
+
st.write("### Chat History")
|
195 |
+
for msg in st.session_state.message_history:
|
196 |
+
st.write(f"**User:** {msg['question']}")
|
197 |
+
st.write(f"**Bot:** {msg['answer']}")
|
198 |
+
|
199 |
+
# Email history feature
|
200 |
+
recipient_email = st.text_input("Enter email to receive chat history:")
|
201 |
+
if st.button("Send History via Email"):
|
202 |
+
if st.session_state.message_history:
|
203 |
+
history_text = "\n\n".join([f"User: {msg['question']}\nBot: {msg['answer']}" for msg in st.session_state.message_history])
|
204 |
+
success = send_email(recipient_email, "Chat History", history_text)
|
205 |
+
if success:
|
206 |
+
st.success(f"Chat history sent to {recipient_email}!")
|
207 |
+
else:
|
208 |
+
st.warning("Chat history is empty.")
|
requirements.txt
CHANGED
@@ -6,3 +6,5 @@ langchain-groq
|
|
6 |
python-dotenv
|
7 |
beautifulsoup4
|
8 |
faiss-cpu
|
|
|
|
|
|
6 |
python-dotenv
|
7 |
beautifulsoup4
|
8 |
faiss-cpu
|
9 |
+
requests
|
10 |
+
smtplib
|