Spaces:
Sleeping
Sleeping
create main
Browse files
app.py
CHANGED
@@ -1,52 +1,175 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
start_time = time.time()
|
5 |
-
documents = []
|
6 |
-
st.info("Starting knowledge base creation...")
|
7 |
-
|
8 |
-
# Create progress bar
|
9 |
-
progress_bar = st.progress(0)
|
10 |
-
total_urls = len(urls)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
chunks = text_splitter.split_documents(documents)
|
24 |
|
25 |
-
|
26 |
-
st.write(f"📄 Split into {len(chunks)} chunks")
|
27 |
-
|
28 |
-
vector_store = FAISS.from_documents(chunks, embeddings_model)
|
29 |
vector_store.save_local(VECTOR_STORE_PATH)
|
30 |
|
31 |
-
# Calculate metrics
|
32 |
end_time = time.time()
|
33 |
-
|
34 |
-
|
35 |
-
# Calculate size of vector store directory
|
36 |
-
total_size = 0
|
37 |
-
for path, dirs, files in os.walk(VECTOR_STORE_PATH):
|
38 |
-
for f in files:
|
39 |
-
fp = os.path.join(path, f)
|
40 |
-
total_size += os.path.getsize(fp)
|
41 |
-
|
42 |
-
size_mb = total_size / (1024 * 1024)
|
43 |
|
44 |
-
# Display completion message
|
45 |
st.success(f"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
🔢 Total chunks: {len(chunks)}
|
50 |
""")
|
51 |
|
52 |
-
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
+
from langchain_community.document_loaders import WebBaseLoader
|
10 |
+
from langchain_core.prompts import PromptTemplate
|
11 |
+
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain_core.runnables import RunnableLambda
|
13 |
+
import smtplib
|
14 |
+
from email.mime.text import MIMEText
|
15 |
+
from email.mime.multipart import MIMEMultipart
|
16 |
+
|
17 |
+
# Базовая конфигурация страницы
|
18 |
+
st.set_page_config(page_title="Legal Assistant", page_icon="⚖️")
|
19 |
+
st.title("Legal Assistant")
|
20 |
+
|
21 |
+
# Путь для хранения базы знаний
|
22 |
+
VECTOR_STORE_PATH = "vector_store"
|
23 |
+
|
24 |
+
# URLs вашего сайта
|
25 |
+
urls = [
|
26 |
+
"https://status.law",
|
27 |
+
"https://status.law/about",
|
28 |
+
# ... остальные URLs ...
|
29 |
+
]
|
30 |
+
|
31 |
+
# Загрузка секретов
|
32 |
+
try:
|
33 |
+
EMAIL_SENDER = st.secrets["EMAIL_SENDER"]
|
34 |
+
EMAIL_PASSWORD = st.secrets["EMAIL_PASSWORD"]
|
35 |
+
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
|
36 |
+
except Exception as e:
|
37 |
+
st.error("Error loading secrets. Please check your configuration.")
|
38 |
+
st.stop()
|
39 |
+
|
40 |
+
# Инициализация моделей
|
41 |
+
@st.cache_resource
|
42 |
+
def init_models():
|
43 |
+
llm = ChatGroq(
|
44 |
+
model_name="llama-3.3-70b-versatile",
|
45 |
+
temperature=0.6,
|
46 |
+
api_key=GROQ_API_KEY
|
47 |
+
)
|
48 |
+
embeddings = HuggingFaceEmbeddings(
|
49 |
+
model_name="intfloat/multilingual-e5-large-instruct"
|
50 |
+
)
|
51 |
+
return llm, embeddings
|
52 |
+
|
53 |
+
# Создание базы знаний
|
54 |
+
def build_knowledge_base(embeddings):
|
55 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
documents = []
|
58 |
+
with st.status("Loading website content...") as status:
|
59 |
+
for url in urls:
|
60 |
+
try:
|
61 |
+
loader = WebBaseLoader(url)
|
62 |
+
docs = loader.load()
|
63 |
+
documents.extend(docs)
|
64 |
+
status.update(label=f"Loaded {url}")
|
65 |
+
except Exception as e:
|
66 |
+
st.error(f"Error loading {url}: {str(e)}")
|
67 |
+
|
68 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
69 |
+
chunk_size=500,
|
70 |
+
chunk_overlap=100
|
71 |
+
)
|
72 |
chunks = text_splitter.split_documents(documents)
|
73 |
|
74 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
|
|
|
|
|
|
75 |
vector_store.save_local(VECTOR_STORE_PATH)
|
76 |
|
|
|
77 |
end_time = time.time()
|
78 |
+
build_time = end_time - start_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
80 |
st.success(f"""
|
81 |
+
Knowledge base created successfully:
|
82 |
+
- Time taken: {build_time:.2f} seconds
|
83 |
+
- Number of chunks: {len(chunks)}
|
|
|
84 |
""")
|
85 |
|
86 |
+
return vector_store
|
87 |
+
|
88 |
+
# Отправка email
|
89 |
+
def send_chat_history(history):
|
90 |
+
try:
|
91 |
+
msg = MIMEMultipart()
|
92 |
+
msg['From'] = EMAIL_SENDER
|
93 |
+
msg['To'] = EMAIL_SENDER
|
94 |
+
msg['Subject'] = "Chat History Update"
|
95 |
+
|
96 |
+
body = "\n\n".join([
|
97 |
+
f"Q: {item['question']}\nA: {item['answer']}"
|
98 |
+
for item in history
|
99 |
+
])
|
100 |
+
msg.attach(MIMEText(body, 'plain'))
|
101 |
+
|
102 |
+
with smtplib.SMTP('smtp.gmail.com', 587) as server:
|
103 |
+
server.starttls()
|
104 |
+
server.login(EMAIL_SENDER, EMAIL_PASSWORD)
|
105 |
+
server.send_message(msg)
|
106 |
+
except Exception as e:
|
107 |
+
st.error(f"Failed to send email: {str(e)}")
|
108 |
+
|
109 |
+
# Основной код
|
110 |
+
def main():
|
111 |
+
# Инициализация моделей
|
112 |
+
llm, embeddings = init_models()
|
113 |
+
|
114 |
+
# Проверка существ��вания базы знаний
|
115 |
+
if not os.path.exists(VECTOR_STORE_PATH):
|
116 |
+
st.warning("Knowledge base not found.")
|
117 |
+
if st.button("Create Knowledge Base"):
|
118 |
+
vector_store = build_knowledge_base(embeddings)
|
119 |
+
st.session_state.vector_store = vector_store
|
120 |
+
st.rerun()
|
121 |
+
else:
|
122 |
+
if 'vector_store' not in st.session_state:
|
123 |
+
st.session_state.vector_store = FAISS.load_local(
|
124 |
+
VECTOR_STORE_PATH,
|
125 |
+
embeddings,
|
126 |
+
allow_dangerous_deserialization=True
|
127 |
+
)
|
128 |
+
|
129 |
+
# Режим чата
|
130 |
+
if 'vector_store' in st.session_state:
|
131 |
+
if 'messages' not in st.session_state:
|
132 |
+
st.session_state.messages = []
|
133 |
+
|
134 |
+
# Показ истории сообщений
|
135 |
+
for message in st.session_state.messages:
|
136 |
+
st.chat_message("user").write(message["question"])
|
137 |
+
st.chat_message("assistant").write(message["answer"])
|
138 |
+
|
139 |
+
# Ввод пользователя
|
140 |
+
if question := st.chat_input("Ask your question"):
|
141 |
+
st.chat_message("user").write(question)
|
142 |
+
|
143 |
+
# Поиск контекста и генерация ответа
|
144 |
+
with st.chat_message("assistant"):
|
145 |
+
with st.spinner("Thinking..."):
|
146 |
+
context = st.session_state.vector_store.similarity_search(question)
|
147 |
+
context_text = "\n".join([doc.page_content for doc in context])
|
148 |
+
|
149 |
+
prompt = PromptTemplate.from_template("""
|
150 |
+
You are a helpful and polite legal assistant. Answer the question based on the provided context.
|
151 |
+
If you cannot answer based on the context, say so politely.
|
152 |
+
|
153 |
+
Context: {context}
|
154 |
+
Question: {question}
|
155 |
+
""")
|
156 |
+
|
157 |
+
chain = prompt | llm | StrOutputParser()
|
158 |
+
response = chain.invoke({
|
159 |
+
"context": context_text,
|
160 |
+
"question": question
|
161 |
+
})
|
162 |
+
|
163 |
+
st.write(response)
|
164 |
+
|
165 |
+
# Сохранение истории
|
166 |
+
st.session_state.messages.append({
|
167 |
+
"question": question,
|
168 |
+
"answer": response
|
169 |
+
})
|
170 |
+
|
171 |
+
# Отправка email
|
172 |
+
send_chat_history(st.session_state.messages)
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
main()
|