Spaces:
Sleeping
Sleeping
Create two-in-one.py
Browse filesThe logic for creating a knowledge base and working with the bot is separated
- two-in-one.py +150 -0
two-in-one.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_community.document_loaders import WebBaseLoader
|
8 |
+
from langchain_core.prompts import PromptTemplate
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
11 |
+
from requests.exceptions import RequestException, Timeout
|
12 |
+
|
13 |
+
# Загрузка переменных окружения
|
14 |
+
if os.path.exists(".env"):
|
15 |
+
load_dotenv(verbose=True)
|
16 |
+
|
17 |
+
# Загрузка API-ключей
|
18 |
+
try:
|
19 |
+
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
|
20 |
+
USER_AGENT = st.secrets["USER_AGENT"]
|
21 |
+
LANGSMITH_TRACING = st.secrets["LANGSMITH_TRACING"]
|
22 |
+
LANGSMITH_ENDPOINT = st.secrets["LANGSMITH_ENDPOINT"]
|
23 |
+
LANGSMITH_API_KEY = st.secrets["LANGSMITH_API_KEY"]
|
24 |
+
LANGSMITH_PROJECT = st.secrets["LANGSMITH_PROJECT"]
|
25 |
+
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
26 |
+
except FileNotFoundError:
|
27 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
28 |
+
USER_AGENT = os.getenv("USER_AGENT")
|
29 |
+
LANGSMITH_TRACING = os.getenv("LANGSMITH_TRACING")
|
30 |
+
LANGSMITH_ENDPOINT = os.getenv("LANGSMITH_ENDPOINT")
|
31 |
+
LANGSMITH_API_KEY = os.getenv("LANGSMITH_API_KEY")
|
32 |
+
LANGSMITH_PROJECT = os.getenv("LANGSMITH_PROJECT")
|
33 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
34 |
+
|
35 |
+
# Проверка API-ключей
|
36 |
+
if not all([GROQ_API_KEY, USER_AGENT, LANGSMITH_TRACING, LANGSMITH_ENDPOINT, LANGSMITH_API_KEY, LANGSMITH_PROJECT, OPENAI_API_KEY]):
|
37 |
+
st.error("Ошибка: Не все переменные окружения заданы.")
|
38 |
+
st.stop()
|
39 |
+
|
40 |
+
# Инициализация LLM
|
41 |
+
try:
|
42 |
+
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.6, api_key=GROQ_API_KEY)
|
43 |
+
print("[DEBUG] LLM успешно инициализирован")
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Ошибка инициализации LLM: {e}")
|
46 |
+
st.stop()
|
47 |
+
|
48 |
+
# Инициализация эмбеддингов
|
49 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large-instruct")
|
50 |
+
print("[DEBUG] Модель эмбеддингов загружена")
|
51 |
+
|
52 |
+
# Список страниц для анализа
|
53 |
+
urls = [
|
54 |
+
"https://status.law",
|
55 |
+
"https://status.law/about",
|
56 |
+
"https://status.law/careers",
|
57 |
+
"https://status.law/challenging-sanctions",
|
58 |
+
"https://status.law/contact",
|
59 |
+
"https://status.law/cross-border-banking-legal-issues",
|
60 |
+
"https://status.law/extradition-defense",
|
61 |
+
"https://status.law/international-prosecution-protection",
|
62 |
+
"https://status.law/interpol-red-notice-removal",
|
63 |
+
"https://status.law/practice-areas",
|
64 |
+
"https://status.law/reputation-protection",
|
65 |
+
"https://status.law/faq"
|
66 |
+
]
|
67 |
+
|
68 |
+
# Путь к файлу векторного хранилища
|
69 |
+
VECTOR_STORE_PATH = "vector_store"
|
70 |
+
|
71 |
+
# Функция для создания базы знаний
|
72 |
+
def build_knowledge_base():
|
73 |
+
documents = []
|
74 |
+
for url in urls:
|
75 |
+
try:
|
76 |
+
loader = WebBaseLoader(url)
|
77 |
+
documents.extend(loader.load(timeout=10))
|
78 |
+
st.write(f"[DEBUG] Загружен контент с {url}")
|
79 |
+
except (RequestException, Timeout) as e:
|
80 |
+
st.write(f"[ERROR] Ошибка загрузки страницы {url}: {e}")
|
81 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
82 |
+
chunks = text_splitter.split_documents(documents)
|
83 |
+
st.write(f"[DEBUG] Разбито на {len(chunks)} фрагментов")
|
84 |
+
vector_store = FAISS.from_documents(chunks, embeddings_model)
|
85 |
+
vector_store.save_local(VECTOR_STORE_PATH)
|
86 |
+
st.write("[DEBUG] Векторное хранилище создано и сохранено")
|
87 |
+
return vector_store
|
88 |
+
|
89 |
+
# Функция для загрузки базы знаний
|
90 |
+
@st.cache_resource
|
91 |
+
def load_knowledge_base():
|
92 |
+
if os.path.exists(VECTOR_STORE_PATH):
|
93 |
+
st.write("[DEBUG] Загрузка существующего векторного хранилища")
|
94 |
+
return FAISS.load_local(VECTOR_STORE_PATH, embeddings_model)
|
95 |
+
else:
|
96 |
+
st.write("[DEBUG] Векторное хранилище не найдено, создание нового")
|
97 |
+
return build_knowledge_base()
|
98 |
+
|
99 |
+
# Загрузка или создание базы знаний
|
100 |
+
vector_store = load_knowledge_base()
|
101 |
+
|
102 |
+
# Промпт для бота
|
103 |
+
template = """
|
104 |
+
You are a helpful legal assistant that answers questions based on information from status.law.
|
105 |
+
Answer accurately and concisely.
|
106 |
+
Question: {question}
|
107 |
+
Only use the provided context to answer the question.
|
108 |
+
Context: {context}
|
109 |
+
"""
|
110 |
+
prompt = PromptTemplate.from_template(template)
|
111 |
+
|
112 |
+
# Инициализация цепочки обработки запроса
|
113 |
+
if "chain" not in st.session_state:
|
114 |
+
st.session_state.chain = (
|
115 |
+
RunnableLambda(lambda x: {"context": x["context"], "question": x["question"]})
|
116 |
+
| prompt
|
117 |
+
| llm
|
118 |
+
| StrOutputParser()
|
119 |
+
)
|
120 |
+
chain = st.session_state.chain
|
121 |
+
|
122 |
+
# Интерфейс Streamlit
|
123 |
+
st.set_page_config(page_title="Legal Chatbot", page_icon="🤖")
|
124 |
+
st.title("🤖 Legal Chatbot")
|
125 |
+
st.write("Этот бот отвечает на юридические вопросы, используя информацию с сайта status.law.")
|
126 |
+
|
127 |
+
# Поле для ввода вопроса
|
128 |
+
user_input = st.text_input("Введите ваш вопрос:")
|
129 |
+
if st.button("Отправить") and user_input:
|
130 |
+
# Поиск релевантных документов
|
131 |
+
retrieved_docs = vector_store.similarity_search(user_input)
|
132 |
+
context_text = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
133 |
+
|
134 |
+
# Генерация ответа
|
135 |
+
response = chain.invoke({"question": user_input, "context": context_text})
|
136 |
+
|
137 |
+
# Сохранение истории сообщений
|
138 |
+
if "message_history" not in st.session_state:
|
139 |
+
st.session_state.message_history = []
|
140 |
+
st.session_state.message_history.append({"question": user_input, "answer": response})
|
141 |
+
|
142 |
+
# Вывод ответа
|
143 |
+
st.write(response)
|
144 |
+
|
145 |
+
# Вывод истории сообщений
|
146 |
+
if "message_history" in st.session_state:
|
147 |
+
st.write("### История сообщений")
|
148 |
+
for msg in st.session_state.message_history:
|
149 |
+
st.write(f"**User:** {msg['question']}")
|
150 |
+
st.write(f"**Bot:** {msg['answer']}")
|