import streamlit as st
st.set_page_config(page_title="Status Law Assistant", page_icon="⚖️")
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
import requests
import json
from datetime import datetime
from huggingface_hub import HfApi, upload_file, upload_folder, create_repo, Repository
from huggingface_hub.utils import RepositoryNotFoundError
import shutil
# Add these to your secrets or environment variables
try:
HF_TOKEN = st.secrets["HF_TOKEN"]
HF_USERNAME = "Rulga"
DATASET_NAME = "LS_chat"
DATASET_REPO = f"{HF_USERNAME}/{DATASET_NAME}"
# Добавим проверку значения токена
if not HF_TOKEN or HF_TOKEN.strip() == "":
st.error("HF_TOKEN пустой или отсутствует в secrets")
st.stop()
st.write("DEBUG: HF credentials loaded successfully")
except Exception as e:
st.error(f"Ошибка загрузки HuggingFace credentials: {str(e)}")
st.stop()
# Define base directory and absolute paths
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
VECTOR_STORE_PATH = os.path.join(BASE_DIR, "vector_store")
CHAT_HISTORY_DIR = os.path.join(BASE_DIR, "chat_history")
# Create required directories with absolute paths
REQUIRED_DIRS = [CHAT_HISTORY_DIR, VECTOR_STORE_PATH]
for dir_path in REQUIRED_DIRS:
os.makedirs(dir_path, exist_ok=True)
gitkeep_path = os.path.join(dir_path, '.gitkeep')
if not os.path.exists(gitkeep_path):
with open(gitkeep_path, 'w') as f:
pass
# Knowledge base info in session_state
if 'kb_info' not in st.session_state:
st.session_state.kb_info = {
'build_time': None,
'size': None
}
# Initialize chat_history in session_state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Initialize messages if not exists
if 'messages' not in st.session_state:
st.session_state.messages = []
# Create history folder if not exists
#if not os.path.exists("chat_history"):
# os.makedirs("chat_history")
# Display title and knowledge base info
# st.title("www.Status.Law Legal Assistant")
st.markdown(
'''
''',
unsafe_allow_html=True
)
if st.session_state.kb_info['build_time'] and st.session_state.kb_info['size']:
st.caption(f"(Knowledge base build time: {st.session_state.kb_info['build_time']:.2f} seconds, "
f"size: {st.session_state.kb_info['size']:.2f} MB)")
# Path to store vector database
# VECTOR_STORE_PATH = "vector_store"
# Website URLs
urls = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/challenging-sanctions",
"https://status.law/tariffs-for-services-against-extradition-en",
"https://status.law/law-firm-contact-legal-protection",
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Load secrets
try:
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
except Exception as e:
st.error("Error loading secrets. Please check your configuration.")
st.stop()
# Initialize models
@st.cache_resource
def init_models():
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=GROQ_API_KEY
)
embeddings = HuggingFaceEmbeddings(
#model_name="intfloat/multilingual-e5-large-instruct"
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
return llm, embeddings
# Build knowledge base
def build_knowledge_base(embeddings):
start_time = time.time()
documents = []
with st.status("Loading website content...") as status:
for url in urls:
try:
loader = WebBaseLoader(url)
docs = loader.load()
documents.extend(docs)
status.update(label=f"Loaded {url}")
except Exception as e:
st.error(f"Error loading {url}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
vector_store = FAISS.from_documents(chunks, embeddings)
# Immediately save vector store after creation
force_save_vector_store(vector_store)
end_time = time.time()
build_time = end_time - start_time
# Calculate knowledge base size
total_size = 0
for path, dirs, files in os.walk(VECTOR_STORE_PATH):
for f in files:
fp = os.path.join(path, f)
total_size += os.path.getsize(fp)
size_mb = total_size / (1024 * 1024)
# Save knowledge base info
st.session_state.kb_info['build_time'] = build_time
st.session_state.kb_info['size'] = size_mb
st.success(f"""
Knowledge base created successfully:
- Time taken: {build_time:.2f} seconds
- Size: {size_mb:.2f} MB
- Number of chunks: {len(chunks)}
""")
return vector_store
# Function to save chat history
def save_chat_to_file(chat_history):
"""Save chat history to file using absolute path"""
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(chat_history, f, ensure_ascii=False, indent=2)
except Exception as e:
st.error(f"Error saving chat history: {e}")
# Function to load chat history
def load_chat_history():
"""Load chat history from file using absolute path"""
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
if os.path.exists(filename):
try:
with open(filename, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
st.error(f"Error loading chat history: {e}")
return []
return []
def check_directory_permissions(directory):
"""Check if directory has proper read/write permissions"""
try:
# Check if directory exists and create if not
os.makedirs(directory, exist_ok=True)
# Try to create a test file
test_file = os.path.join(directory, "write_test.txt")
with open(test_file, "w") as f:
f.write("test")
f.flush()
os.fsync(f.fileno()) # Force write to disk
# Try to read the test file
with open(test_file, "r") as f:
content = f.read()
if content != "test":
raise Exception("File content verification failed")
# Clean up
os.remove(test_file)
return True, None
except Exception as e:
permissions = oct(os.stat(directory).st_mode)[-3:] if os.path.exists(directory) else "N/A"
error_msg = f"Permission error: {str(e)} (Directory permissions: {permissions})"
return False, error_msg
def sync_with_hf(local_path, repo_path, commit_message):
"""Sync local files with Hugging Face dataset"""
try:
st.write(f"DEBUG: Starting sync with HF for {repo_path}")
api = HfApi()
# Ensure the repository exists
try:
api.repo_info(repo_id=DATASET_REPO, repo_type="dataset")
st.write("DEBUG: Repository exists")
except RepositoryNotFoundError:
st.write("DEBUG: Creating new repository")
create_repo(DATASET_REPO, repo_type="dataset", token=HF_TOKEN)
# Upload directory content
st.write(f"DEBUG: Uploading folder {local_path} to {repo_path}")
api.upload_folder(
folder_path=local_path,
path_in_repo=repo_path,
repo_id=DATASET_REPO,
repo_type="dataset",
commit_message=commit_message,
token=HF_TOKEN
)
st.toast(f"✅ Synchronized with Hugging Face: {repo_path}", icon="🤗")
st.write("DEBUG: Sync completed successfully")
except Exception as e:
error_msg = f"Failed to sync with Hugging Face: {str(e)}"
st.error(error_msg)
st.write(f"DEBUG: Sync error details: {str(e)}")
raise Exception(error_msg)
def force_save_vector_store(vector_store):
"""Save vector store locally and sync with HF"""
try:
# Local save
vector_store.save_local(VECTOR_STORE_PATH)
# Sync with HF
sync_with_hf(
local_path=VECTOR_STORE_PATH,
repo_path="vector_store",
commit_message=f"Update vector store: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
except Exception as e:
error_msg = f"Failed to save vector store: {str(e)}"
st.error(error_msg)
raise Exception(error_msg)
def force_save_chat_history(chat_entry):
"""Save chat history locally and sync with HF"""
try:
current_date = datetime.now().strftime("%Y-%m-%d")
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{current_date}.json")
# Load existing history
existing_history = []
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
existing_history = json.load(f)
# Add new entry
existing_history.append(chat_entry)
# Save locally
with open(filename, 'w', encoding='utf-8') as f:
json.dump(existing_history, f, ensure_ascii=False, indent=2)
# Sync with HF
sync_with_hf(
local_path=CHAT_HISTORY_DIR,
repo_path="chat_history",
commit_message=f"Update chat history: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
except Exception as e:
error_msg = f"Failed to save chat history: {str(e)}"
st.error(error_msg)
raise Exception(error_msg)
# Main function
def main():
# Initialize models
llm, embeddings = init_models()
# Check if knowledge base exists
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
st.warning("Knowledge base not found. Please create it first.")
if st.button("Create Knowledge Base"):
with st.spinner("Creating knowledge base... This may take a few minutes."):
try:
vector_store = build_knowledge_base(embeddings)
st.session_state.vector_store = vector_store
st.success("Knowledge base created successfully!")
st.rerun()
except Exception as e:
st.error(f"Error creating knowledge base: {e}")
return
# Load existing knowledge base
if 'vector_store' not in st.session_state:
try:
st.session_state.vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
except Exception as e:
st.error(f"Error loading knowledge base: {e}")
return
with st.sidebar:
st.write(f"Working directory: {BASE_DIR}")
st.write(f"Vector store: {VECTOR_STORE_PATH}")
st.write(f"Chat history: {CHAT_HISTORY_DIR}")
# Chat mode
if 'vector_store' in st.session_state:
if 'messages' not in st.session_state:
st.session_state.messages = []
# Load chat history on startup
if not st.session_state.chat_history:
st.session_state.chat_history = load_chat_history()
# Display chat history
for message in st.session_state.messages:
st.chat_message("user").write(message["question"])
st.chat_message("assistant").write(message["answer"])
# User input
if question := st.chat_input("Ask your question"):
st.chat_message("user").write(question)
# Retrieve context and generate response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
context = st.session_state.vector_store.similarity_search(question)
context_text = "\n".join([doc.page_content for doc in context])
prompt = PromptTemplate.from_template("""
You are a helpful and polite legal assistant at Status Law, an international law firm specializing in extradition cases.
Answer in the language in which the question was asked.
Use the following information to answer questions:
- Primary context: {context}
- Services and pricing page: https://status.law/tariffs-for-services-against-extradition-en
When asked about service prices or specific legal services:
1. Search for the specific service on our website
2. Provide a brief description of how Status Law can help with this specific issue
3. Explain the key benefits or features of this service
4. Only share the direct link to pricing (https://status.law/tariffs-for-services-against-extradition-en) if the question is specifically about prices
5. For general service inquiries without price questions, focus on service descriptions without sharing the pricing page link
For example:
- If asked "How much does legal representation in court cost?", describe the service briefly and provide the pricing page link
- If asked "Can you help with document preparation?", explain the service without sharing the pricing link
If you cannot answer based on the available information, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone)
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO)
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/)
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Be concise but informative
3. Cite specific service details when relevant
4. Emphasize our international expertise in extradition law
5. Share pricing page link ONLY when questions are specifically about costs
6. Offer contact options if the question requires detailed legal advice
""")
chain = prompt | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": question
})
st.write(response)
# Create chat entry
chat_entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"question": question,
"answer": response,
"context": context_text
}
# Force save chat history
force_save_chat_history(chat_entry)
# Update session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.session_state.chat_history.append(chat_entry)
st.session_state.messages.append({
"question": question,
"answer": response
})
if __name__ == "__main__":
main()