File size: 9,108 Bytes
6096304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import pandas as pd
import numpy as np
import yfinance as yf
import ast
from scipy import stats
from datetime import datetime, timedelta
import pytz
import pandas_market_calendars as mcal
import alphalens as al
import matplotlib.pyplot as plt

def sentiment_to_numerical(sentiment):
    mapping = {'Negative': -1, 'Positive': 1, 'Neutral': 0}
    return sentiment.map(mapping)
            
def process_sentiment_data(sentiment_data = 'finbert_sentiment.csv', sector_ticker = 'sector_ticker.csv', prices = 'prices.csv'):
    columns_to_load = ['Ticker', 'pubDate', 'finbert_output']
    df = pd.read_csv(sentiment_data, usecols=columns_to_load)
    df.rename(columns={'Publication Date': 'pubDate','finbert_output': 'Sentiment'}, inplace=True)

    # Adjusting the dates of news articles
    nyse = mcal.get_calendar('NYSE')

    trading_start_hour = 9
    trading_start_minute = 30
    trading_end_hour = 16
    trading_end_minute = 0

    def adjust_date(pub_date):
        if pd.isnull(pub_date) or not isinstance(pub_date, pd.Timestamp):
            return pub_date

        trading_start_time = pd.Timestamp(f'{pub_date.date()} {trading_start_hour}:{trading_start_minute}')
        if pub_date >= trading_start_time:
            next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
            return next_trading_day
        else:
            valid_days = nyse.valid_days(start_date=pub_date.date(), end_date=pub_date.date())
            if not valid_days.empty and pub_date.date() == valid_days[0].date():
                return pub_date
            else:
                next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
                return next_trading_day

    df['pubDate'] = df['pubDate'].apply(adjust_date)

    # Converting probabiltiies to one value
    def convert_sentiment_to_score(sentiment):
        predicted_sentiment_probabilities = {}

        components = sentiment.split(', ')
        for component in components:
            key_value = component.split(':')
            if len(key_value) == 2:  
                key, value = key_value
                key = key.strip(" '{}").capitalize()  
                try:
                    value = float(value.strip())  
                except ValueError:
                    continue  
                predicted_sentiment_probabilities[key] = value
        
        positive = predicted_sentiment_probabilities.get('Positive', 0)
        negative = predicted_sentiment_probabilities.get('Negative', 0)
        neutral = predicted_sentiment_probabilities.get('Neutral',0)
        sentiment_score = (positive - negative)/(1 + neutral)
        return sentiment_score

    df['Sentiment_Score_2'] = df['Sentiment'].apply(convert_sentiment_to_score)

    # replacing invalid tickers
    df['pubDate'] = pd.to_datetime(df['pubDate'], utc=True, format='ISO8601')
    df['pubDate'] = df['pubDate'].dt.date

    print(df['pubDate'].dtypes)

    replacements = {
        'ATVI': 'ATVIX',
        'ABC': 'ABG',
        'FBHS': 'FBIN',
        'FISV': 'FI',
        'FRC': 'FRCB',
        'NLOK': 'SYM.MU',
        'PKI': 'PKN.SG',
        'RE': 'EG',
        'SIVB': 'SIVBQ',
    }

    df['Ticker'] = df['Ticker'].replace(replacements)

    df = df[df['Ticker'] != 'SBNY'] 

    #
    aggregated_data = df.groupby(['Ticker', 'pubDate'])['Sentiment_Score_2'].mean().reset_index()
    aggregated_data['pubDate'] = pd.to_datetime(aggregated_data['pubDate']).dt.tz_localize('UTC')
    aggregated_data.set_index(['pubDate', 'Ticker'], inplace=True)

    prices = pd.read_csv(prices, index_col=0, parse_dates=True)

    #
    equal_weighted_benchmark = prices.pct_change(periods=1).shift(periods=-1).mean(axis=1)

    equal_weighted_benchmark_df = equal_weighted_benchmark.reset_index()
    equal_weighted_benchmark_df.columns = ['date', 'equal_weighted_benchmark']
    returns_5d=prices.pct_change(periods=5).shift(periods=-5)/5
    returns_10d=prices.pct_change(periods=10).shift(periods=-10)/10
    returns_20d=prices.pct_change(periods=20).shift(periods=-20)/20
    mean_5d = returns_5d.mean(axis=1).reset_index()
    mean_10d = returns_10d.mean(axis=1).reset_index()
    mean_20d = returns_20d.mean(axis=1).reset_index()
    mean_5d.columns = ['date', '5d_mean_return']
    mean_10d.columns = ['date', '10d_mean_return']
    mean_20d.columns = ['date', '20d_mean_return']
    equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_5d, on='date', how='left')
    equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_10d, on='date', how='left')
    equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_20d, on='date', how='left')
    cut_date_min= aggregated_data.index.get_level_values('pubDate').min()
    cut_date_max= aggregated_data.index.get_level_values('pubDate').max()
    equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date>=cut_date_min]
    equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date<=cut_date_max]
    equal_weighted_benchmark_df

    #
    tickers = aggregated_data.index.get_level_values('Ticker').unique()
    start_date = aggregated_data.index.get_level_values('pubDate').min() - pd.Timedelta(days=30)
    end_date = aggregated_data.index.get_level_values('pubDate').max() + pd.Timedelta(days=30)

    all_dates = prices.loc[cut_date_min:cut_date_max].index
    all_tickers_dates = pd.MultiIndex.from_product([tickers, all_dates], names=['Ticker', 'Date'])
    all_tickers_dates_df = pd.DataFrame(index=all_tickers_dates).reset_index()
    aggregated_data_reset = aggregated_data.reset_index()
    merged_data = pd.merge(all_tickers_dates_df, aggregated_data_reset, how='left', left_on=['Ticker', 'Date'], right_on=['Ticker', 'pubDate'])
    sector_data = pd.read_excel('scraping.xlsx', usecols=['Ticker', 'Sector'])
    merged_data = merged_data.reset_index()
    merged_data = pd.merge(merged_data, sector_data, how='left', left_on='Ticker', right_on='Ticker')

    #
    decay_factor = 0.7

    for ticker in tickers:
        ticker_data = merged_data[merged_data['Ticker'] == ticker].copy()

        original_nans = ticker_data['Sentiment_Score_2'].isna()

        ticker_data['Sentiment_Score_2'] = ticker_data['Sentiment_Score_2'].ffill()

        for i in range(1, len(ticker_data)):
            if original_nans.iloc[i]:
                ticker_data.iloc[i, ticker_data.columns.get_loc('Sentiment_Score_2')] = ticker_data.iloc[i - 1, ticker_data.columns.get_loc('Sentiment_Score_2')] * decay_factor

        merged_data.loc[merged_data['Ticker'] == ticker, 'Sentiment_Score_2'] = ticker_data['Sentiment_Score_2']

    merged_data['Sentiment_Score_2'].fillna(0, inplace=True)
    merged_data.drop(columns=['pubDate'], inplace=True)
    merged_data.set_index(['Date', 'Ticker'], inplace=True)

    return merged_data, prices, equal_weighted_benchmark_df

# Alphalens
def alphalens_analysis(merged_data, prices):
    factor_data=[]
    factor_data = al.utils.get_clean_factor_and_forward_returns(
        factor=merged_data['Sentiment_Score_2'],
        prices=prices,
        binning_by_group=False,
        bins=None,
        quantiles=5,
        periods=(1, 5, 10, 20),
        groupby=merged_data['Sector'],
    )

    al.tears.create_returns_tear_sheet(factor_data, long_short=True, group_neutral=False)

    return factor_data

def alphalens_analysis_by_sector(factor_data):
    mean_return_by_qt, std_err_by_qt = al.performance.mean_return_by_quantile(factor_data, by_group=True)
    al.plotting.plot_quantile_returns_bar(mean_return_by_qt, by_group=True)

def calculate_information_ratio(factor_data, equal_weighted_benchmark_df):
    # Merge the factor data with the benchmark data
    factor_data = factor_data.merge(equal_weighted_benchmark_df, on='date', how='left')
    
    # Calculate excess returns for various holding periods
    factor_data['excess_return_1D'] = factor_data['1D'] - factor_data['equal_weighted_benchmark']
    factor_data['excess_return_5D'] = factor_data['5D'] - factor_data['5d_mean_return']
    factor_data['excess_return_10D'] = factor_data['10D'] - factor_data['10d_mean_return']
    factor_data['excess_return_20D'] = factor_data['20D'] - factor_data['20d_mean_return']
    
    # Initialize a DataFrame to store IR results
    results = pd.DataFrame(index=range(1, 6), columns=['IR 1D', 'IR 5D', 'IR 10D', 'IR 20D'])
    
    # Calculate IR for each quantile and holding period
    for quantile in range(1, 6):
        for period in [1, 5, 10, 20]:
            column_name = f'excess_return_{period}D'
            tmp = factor_data[factor_data.factor_quantile == quantile][['date', column_name]].groupby('date').mean()
            ir = np.mean(tmp) / np.std(tmp) * np.sqrt(252)
            results.at[quantile, f'IR {period}D'] = ir.values[0]
    
    from IPython.display import display
    display(results.style.format("{:.3f}"))