Spaces:
Sleeping
Sleeping
File size: 9,108 Bytes
6096304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import pandas as pd
import numpy as np
import yfinance as yf
import ast
from scipy import stats
from datetime import datetime, timedelta
import pytz
import pandas_market_calendars as mcal
import alphalens as al
import matplotlib.pyplot as plt
def sentiment_to_numerical(sentiment):
mapping = {'Negative': -1, 'Positive': 1, 'Neutral': 0}
return sentiment.map(mapping)
def process_sentiment_data(sentiment_data = 'finbert_sentiment.csv', sector_ticker = 'sector_ticker.csv', prices = 'prices.csv'):
columns_to_load = ['Ticker', 'pubDate', 'finbert_output']
df = pd.read_csv(sentiment_data, usecols=columns_to_load)
df.rename(columns={'Publication Date': 'pubDate','finbert_output': 'Sentiment'}, inplace=True)
# Adjusting the dates of news articles
nyse = mcal.get_calendar('NYSE')
trading_start_hour = 9
trading_start_minute = 30
trading_end_hour = 16
trading_end_minute = 0
def adjust_date(pub_date):
if pd.isnull(pub_date) or not isinstance(pub_date, pd.Timestamp):
return pub_date
trading_start_time = pd.Timestamp(f'{pub_date.date()} {trading_start_hour}:{trading_start_minute}')
if pub_date >= trading_start_time:
next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
return next_trading_day
else:
valid_days = nyse.valid_days(start_date=pub_date.date(), end_date=pub_date.date())
if not valid_days.empty and pub_date.date() == valid_days[0].date():
return pub_date
else:
next_trading_day = nyse.schedule(start_date=pub_date.date() + pd.DateOffset(days=1), end_date=pub_date.date() + pd.DateOffset(days=10)).iloc[0]['market_open']
return next_trading_day
df['pubDate'] = df['pubDate'].apply(adjust_date)
# Converting probabiltiies to one value
def convert_sentiment_to_score(sentiment):
predicted_sentiment_probabilities = {}
components = sentiment.split(', ')
for component in components:
key_value = component.split(':')
if len(key_value) == 2:
key, value = key_value
key = key.strip(" '{}").capitalize()
try:
value = float(value.strip())
except ValueError:
continue
predicted_sentiment_probabilities[key] = value
positive = predicted_sentiment_probabilities.get('Positive', 0)
negative = predicted_sentiment_probabilities.get('Negative', 0)
neutral = predicted_sentiment_probabilities.get('Neutral',0)
sentiment_score = (positive - negative)/(1 + neutral)
return sentiment_score
df['Sentiment_Score_2'] = df['Sentiment'].apply(convert_sentiment_to_score)
# replacing invalid tickers
df['pubDate'] = pd.to_datetime(df['pubDate'], utc=True, format='ISO8601')
df['pubDate'] = df['pubDate'].dt.date
print(df['pubDate'].dtypes)
replacements = {
'ATVI': 'ATVIX',
'ABC': 'ABG',
'FBHS': 'FBIN',
'FISV': 'FI',
'FRC': 'FRCB',
'NLOK': 'SYM.MU',
'PKI': 'PKN.SG',
'RE': 'EG',
'SIVB': 'SIVBQ',
}
df['Ticker'] = df['Ticker'].replace(replacements)
df = df[df['Ticker'] != 'SBNY']
#
aggregated_data = df.groupby(['Ticker', 'pubDate'])['Sentiment_Score_2'].mean().reset_index()
aggregated_data['pubDate'] = pd.to_datetime(aggregated_data['pubDate']).dt.tz_localize('UTC')
aggregated_data.set_index(['pubDate', 'Ticker'], inplace=True)
prices = pd.read_csv(prices, index_col=0, parse_dates=True)
#
equal_weighted_benchmark = prices.pct_change(periods=1).shift(periods=-1).mean(axis=1)
equal_weighted_benchmark_df = equal_weighted_benchmark.reset_index()
equal_weighted_benchmark_df.columns = ['date', 'equal_weighted_benchmark']
returns_5d=prices.pct_change(periods=5).shift(periods=-5)/5
returns_10d=prices.pct_change(periods=10).shift(periods=-10)/10
returns_20d=prices.pct_change(periods=20).shift(periods=-20)/20
mean_5d = returns_5d.mean(axis=1).reset_index()
mean_10d = returns_10d.mean(axis=1).reset_index()
mean_20d = returns_20d.mean(axis=1).reset_index()
mean_5d.columns = ['date', '5d_mean_return']
mean_10d.columns = ['date', '10d_mean_return']
mean_20d.columns = ['date', '20d_mean_return']
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_5d, on='date', how='left')
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_10d, on='date', how='left')
equal_weighted_benchmark_df = equal_weighted_benchmark_df.merge(mean_20d, on='date', how='left')
cut_date_min= aggregated_data.index.get_level_values('pubDate').min()
cut_date_max= aggregated_data.index.get_level_values('pubDate').max()
equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date>=cut_date_min]
equal_weighted_benchmark_df = equal_weighted_benchmark_df[equal_weighted_benchmark_df.date<=cut_date_max]
equal_weighted_benchmark_df
#
tickers = aggregated_data.index.get_level_values('Ticker').unique()
start_date = aggregated_data.index.get_level_values('pubDate').min() - pd.Timedelta(days=30)
end_date = aggregated_data.index.get_level_values('pubDate').max() + pd.Timedelta(days=30)
all_dates = prices.loc[cut_date_min:cut_date_max].index
all_tickers_dates = pd.MultiIndex.from_product([tickers, all_dates], names=['Ticker', 'Date'])
all_tickers_dates_df = pd.DataFrame(index=all_tickers_dates).reset_index()
aggregated_data_reset = aggregated_data.reset_index()
merged_data = pd.merge(all_tickers_dates_df, aggregated_data_reset, how='left', left_on=['Ticker', 'Date'], right_on=['Ticker', 'pubDate'])
sector_data = pd.read_excel('scraping.xlsx', usecols=['Ticker', 'Sector'])
merged_data = merged_data.reset_index()
merged_data = pd.merge(merged_data, sector_data, how='left', left_on='Ticker', right_on='Ticker')
#
decay_factor = 0.7
for ticker in tickers:
ticker_data = merged_data[merged_data['Ticker'] == ticker].copy()
original_nans = ticker_data['Sentiment_Score_2'].isna()
ticker_data['Sentiment_Score_2'] = ticker_data['Sentiment_Score_2'].ffill()
for i in range(1, len(ticker_data)):
if original_nans.iloc[i]:
ticker_data.iloc[i, ticker_data.columns.get_loc('Sentiment_Score_2')] = ticker_data.iloc[i - 1, ticker_data.columns.get_loc('Sentiment_Score_2')] * decay_factor
merged_data.loc[merged_data['Ticker'] == ticker, 'Sentiment_Score_2'] = ticker_data['Sentiment_Score_2']
merged_data['Sentiment_Score_2'].fillna(0, inplace=True)
merged_data.drop(columns=['pubDate'], inplace=True)
merged_data.set_index(['Date', 'Ticker'], inplace=True)
return merged_data, prices, equal_weighted_benchmark_df
# Alphalens
def alphalens_analysis(merged_data, prices):
factor_data=[]
factor_data = al.utils.get_clean_factor_and_forward_returns(
factor=merged_data['Sentiment_Score_2'],
prices=prices,
binning_by_group=False,
bins=None,
quantiles=5,
periods=(1, 5, 10, 20),
groupby=merged_data['Sector'],
)
al.tears.create_returns_tear_sheet(factor_data, long_short=True, group_neutral=False)
return factor_data
def alphalens_analysis_by_sector(factor_data):
mean_return_by_qt, std_err_by_qt = al.performance.mean_return_by_quantile(factor_data, by_group=True)
al.plotting.plot_quantile_returns_bar(mean_return_by_qt, by_group=True)
def calculate_information_ratio(factor_data, equal_weighted_benchmark_df):
# Merge the factor data with the benchmark data
factor_data = factor_data.merge(equal_weighted_benchmark_df, on='date', how='left')
# Calculate excess returns for various holding periods
factor_data['excess_return_1D'] = factor_data['1D'] - factor_data['equal_weighted_benchmark']
factor_data['excess_return_5D'] = factor_data['5D'] - factor_data['5d_mean_return']
factor_data['excess_return_10D'] = factor_data['10D'] - factor_data['10d_mean_return']
factor_data['excess_return_20D'] = factor_data['20D'] - factor_data['20d_mean_return']
# Initialize a DataFrame to store IR results
results = pd.DataFrame(index=range(1, 6), columns=['IR 1D', 'IR 5D', 'IR 10D', 'IR 20D'])
# Calculate IR for each quantile and holding period
for quantile in range(1, 6):
for period in [1, 5, 10, 20]:
column_name = f'excess_return_{period}D'
tmp = factor_data[factor_data.factor_quantile == quantile][['date', column_name]].groupby('date').mean()
ir = np.mean(tmp) / np.std(tmp) * np.sqrt(252)
results.at[quantile, f'IR {period}D'] = ir.values[0]
from IPython.display import display
display(results.style.format("{:.3f}"))
|