# import streamlit as st # import pandas as pd # import numpy as np # import matplotlib.pyplot as plt # # Placeholder for loading models # def load_models(): # # In a real scenario, you would load your pre-trained models here. # return {"model_placeholder": "Loaded Model"} # # Placeholder function to classify news as ESG-related # def classify_esg(text, models, api_key): # # Simulate ESG classification logic # # This is where you would use your model to classify the text. # return np.random.choice(["Yes", "No"]) # # Placeholder function to determine sentiment # def determine_sentiment(text, models, api_key): # # Simulate sentiment analysis logic # # This is where you would use your model to determine the sentiment. # return np.random.choice(["Positive", "Neutral", "Negative"]) # # Placeholder function to run Alphalens analysis # def run_alphalens_analysis(data, models, api_key): # # Simulate some metrics # metrics = {"alpha": np.random.rand(), "beta": np.random.rand()} # # Generate a simple plot # fig, ax = plt.subplots() # ax.plot([1, 2, 3], [1, 2, 3], 'r') # Example plot # ax.set_title('Example Plot') # return metrics, [fig] # # Streamlit app code # models = load_models() # st.title('NLP Project: ESG News Analysis and Financial Impact') # api_key = st.sidebar.text_input("OpenAI API Key", type="password") # uploaded_file = st.file_uploader("Choose a CSV file", type="csv") # if uploaded_file is not None: # data = pd.read_csv(uploaded_file) # st.write("Uploaded News Data:") # st.dataframe(data) # if st.button('Classify News as ESG-related'): # data['ESG'] = data['news'].apply(lambda x: classify_esg(x, models, api_key)) # st.write("News with ESG Classification:") # st.dataframe(data) # if st.button('Determine Sentiment'): # data['Sentiment'] = data['news'].apply(lambda x: determine_sentiment(x, models, api_key)) # st.write("News with Sentiment Analysis:") # st.dataframe(data) # if st.button('Run Alphalens Analysis'): # metrics, plots = run_alphalens_analysis(data, models, api_key) # st.write("Alphalens Analysis Metrics:") # st.json(metrics) # st.write("Alphalens Analysis Plots:") # for plot in plots: # st.pyplot(plot) import streamlit as st import pandas as pd import numpy as np import os import openai import json from getpass import getpass from tqdm import tqdm import matplotlib.pyplot as plt def get_sentiment_gpt(company, SASB, news, max_retries=5, model = 'gpt-4-turbo-2024-04-09'): system_prompt = """ As a specialist in ESG analytics, You possess a deep understanding of evaluating environmental, social, and governance factors in the context of corporate news. Your expertise lies in discerning the underlying sentiment of news segments that pertain to a company's ESG practices, determining whether the coverage reflects a positive, negative, or neutral stance. """ allowed_sentiments = ['Negative', 'Positive', 'Neutral'] attempt = 0 while attempt < max_retries: main_prompt = f""" Classify the sentiment (Only options: Positive, Negative, Neutral) of the following news: {news} | The sentiment classification should be about the sections of the news talking about the company {company}. | The ESG part of the news should be around topics within the following SASB topics {SASB} The output should be a structured JSON object with the key: "sentiment". Here is the format I expect for the JSON object: {{ "sentiment": "Enter 'Positive', 'Neutral', or 'Negative'", }} Do not return any additional text or information outside of this JSON structure. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": main_prompt} ] response = openai.chat.completions.create( model=model, messages=messages, response_format={"type": "json_object"} # Enable JSON mode ) response_json = json.loads(response.choices[0].message.content) json_sentiment = response_json.get('sentiment') if json_sentiment in allowed_sentiments: return json_sentiment attempt += 1 # After max retries, if no valid sentiment is found, handle as needed (e.g., return a default sentiment) print("Failed to obtain a valid sentiment after maximum retries. Defaulting to 'Neutral'.") return 'Neutral' # Default return value if no valid sentiment is obtained def update_dataset_with_gpt_sentiment(df, model, column_name='GPT_based_sentiment'): # Initialize the new column to store GPT-based sentiment df['GPT_based_sentiment'] = None # Use tqdm to show a progress bar for the operation for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows"): # Extract necessary information for each row company = row['Company'] # Make sure this matches your DataFrame's column name SASB = row['SASB'] # Make sure this matches your DataFrame's column name news = row['title & content'] # Make sure this matches your DataFrame's column name # Call the function to get the sentiment sentiment = get_sentiment_gpt(company, SASB, news, model=model) # Update the DataFrame with the obtained sentiment df.at[index, column_name] = sentiment # Now correctly assigns the sentiment return df def app_layout(): st.set_page_config(page_title="NLP ESG Project", page_icon="📈") # Custom styles st.markdown( """ """, unsafe_allow_html=True, ) # Header section st.write("# NLP Project: ESG News Analysis and Financial Impact") st.sidebar.write("## Configuration") # API Key input openai_api_key = st.sidebar.text_input("Enter your OpenAI API key", type="password") os.environ["OPENAI_API_KEY"] = openai_api_key openai.api_key = openai_api_key # File Upload st.sidebar.write("## Upload Data") uploaded_file = st.sidebar.file_uploader("", type="csv") # Investment Strategy Slider st.sidebar.markdown("### Investment Strategy") investment_strategy = st.sidebar.slider( "Investment Strategy", min_value=0.0, max_value=1.0, value=0.5, step=0.01, format="", help="0 is Conservative, 1 is Aggressive", label_visibility="collapsed" ) st.sidebar.text(f"Current Strategy: {'Conservative' if investment_strategy <= 0.5 else 'Aggressive'}") # Main container if uploaded_file is not None: # Displaying the file data = pd.read_csv(uploaded_file) st.write("### Uploaded News Data:") st.dataframe(data, use_container_width=True) if st.button("🔍 Classify ESG"): st.write("Classifying ESG-related news...") # Placeholder - replace with actual ESG classification code data['ESG'] = "Yes" # placeholder if st.button("😊 Determine Sentiment"): st.write("Determining sentiment using GPT...") # Run sentiment analysis with GPT try: with st.spinner("Analyzing sentiment..."): # Assume you have your API key set and a function defined to handle sentiment analysis updated_data = update_dataset_with_gpt_sentiment(data, model='gpt-4-turbo-2024-04-09') st.write("News with GPT-based Sentiment Analysis:") st.dataframe(updated_data, use_container_width=True) except Exception as e: st.error(f"An error occurred: {e}") if st.button("📊 Alphalens Analysis"): st.write("Alphalens analysis will be here") # placeholder # Expander for advanced settings with st.expander("Advanced Settings"): st.write("Any advanced settings and configurations will go here.") def main(): app_layout() if __name__ == "__main__": main()