# import streamlit as st # import pandas as pd # import numpy as np # import os # import ast # import openai # from openai import OpenAI # import json # from getpass import getpass # from scipy.spatial.distance import cosine # from tqdm import tqdm # import matplotlib.pyplot as plt # import financial_analysis as fa # from financial_analysis import alphalens_analysis, alphalens_analysis_by_sector, calculate_information_ratio, process_sentiment_data # def get_sentiment_gpt(company, SASB, news, max_retries=5, model = 'gpt-4-turbo-2024-04-09'): # system_prompt = """ # As a specialist in ESG analytics, # You possess a deep understanding of evaluating environmental, social, and governance factors in the context of corporate news. # Your expertise lies in discerning the underlying sentiment of news segments that pertain to a company's ESG practices, # determining whether the coverage reflects a positive, negative, or neutral stance. # """ # allowed_sentiments = ['Negative', 'Positive', 'Neutral'] # attempt = 0 # while attempt < max_retries: # main_prompt = f""" # Classify the sentiment (Only options: Positive, Negative, Neutral) of the following news: {news} | # The sentiment classification should be about the sections of the news talking about the company {company}. | # The ESG part of the news should be around topics within the following SASB topics {SASB} # The output should be a structured JSON object with the key: "sentiment". # Here is the format I expect for the JSON object: # {{ # "sentiment": "Enter 'Positive', 'Neutral', or 'Negative'", # }} # Do not return any additional text or information outside of this JSON structure. # """ # messages = [ # {"role": "system", "content": system_prompt}, # {"role": "user", "content": main_prompt} # ] # response = openai.chat.completions.create( # model=model, # messages=messages, # response_format={"type": "json_object"} # Enable JSON mode # ) # response_json = json.loads(response.choices[0].message.content) # json_sentiment = response_json.get('sentiment') # if json_sentiment in allowed_sentiments: # return json_sentiment # attempt += 1 # # After max retries, if no valid sentiment is found, handle as needed (e.g., return a default sentiment) # print("Failed to obtain a valid sentiment after maximum retries. Defaulting to 'Neutral'.") # return 'Neutral' # Default return value if no valid sentiment is obtained # def update_dataset_with_gpt_sentiment(df, model, column_name='GPT_based_sentiment'): # # Initialize the new column to store GPT-based sentiment # df['GPT_based_sentiment'] = None # # Use tqdm to show a progress bar for the operation # for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows"): # # Extract necessary information for each row # company = row['Company'] # Make sure this matches your DataFrame's column name # SASB = row['SASB'] # Make sure this matches your DataFrame's column name # news = row['title & content'] # Make sure this matches your DataFrame's column name # # Call the function to get the sentiment # sentiment = get_sentiment_gpt(company, SASB, news, model=model) # # Update the DataFrame with the obtained sentiment # df.at[index, column_name] = sentiment # Now correctly assigns the sentiment # return df # # Function to get embeddings, provided by you # def get_embedding(text, model="text-embedding-3-small"): # client = OpenAI() # text = text.replace("\n", " ") # return client.embeddings.create(input=[text], model=model).data[0].embedding # # Function to calculate cosine similarity # def cosine_similarity(v1, v2): # return 1 - cosine(v1, v2) # def calculate_sasb_embeddings(sasb_str): # # Safely convert the string representation of a dictionary into an actual dictionary # try: # sasb_dict = ast.literal_eval(sasb_str) # if not isinstance(sasb_dict, dict): # raise ValueError("SASB column does not contain a valid dictionary.") # except ValueError as e: # print(f"Error converting SASB column to dictionary: {e}") # return {} # sasb_embeddings = {} # for topic, content in sasb_dict.items(): # # Join the list of keywords into a single string # combined_content = ' '.join(content) # sasb_embeddings[topic] = get_embedding(combined_content) # return sasb_embeddings # # Function to process ESG classification # def classify_esg(data): # # Calculate embeddings for the news # data['news_embeddings'] = data['title & content'].apply(get_embedding) # # Calculate embeddings for SASB topics (you need to have your SASB topics defined) # data['sasb_embeddings'] = data['SASB'].apply(calculate_sasb_embeddings) # # Compute cosine similarities # data['cosine_similarities'] = data.apply( # lambda row: {topic: cosine_similarity(row['news_embeddings'], emb) # for topic, emb in row['sasb_embeddings'].items()}, # axis=1 # ) # # Extract max cosine similarity # data['max_cosine_similarity'] = data['cosine_similarities'].apply(lambda x: max(x.values())) # # Mark the top 10% of news by max_cosine_similarity within each 'Sector' as 'Yes' # sector_thresholds = data.groupby('Sector')['max_cosine_similarity'].quantile(0.9).to_dict() # data['ESG_relevance'] = data.apply( # lambda row: 'Yes' if row['max_cosine_similarity'] >= sector_thresholds[row['Sector']] else 'No', # axis=1 # ) # return data # def main(): # st.set_page_config(page_title="NLP ESG Project", page_icon="📈") # # Custom styles # st.markdown( # """ # # """, # unsafe_allow_html=True, # ) # # Header section # st.write("# NLP Project: ESG News Analysis and Financial Impact") # st.sidebar.write("## Configuration") # # API Key input # openai_api_key = st.sidebar.text_input("Enter your OpenAI API key", type="password") # openai_api_key = os.getenv('OPENAI_API_KEY') # os.environ["OPENAI_API_KEY"] = openai_api_key # openai.api_key = openai_api_key # # File Upload # st.sidebar.write("## Upload Data") # uploaded_file = st.sidebar.file_uploader("", type="csv") # # Investment Strategy Slider # st.sidebar.markdown("### Investment Strategy") # investment_strategy = st.sidebar.slider( # "Investment Strategy", # min_value=0.0, max_value=1.0, value=0.5, step=0.01, # format="", # help="0 is Conservative, 1 is Aggressive", # label_visibility="collapsed" # ) # st.sidebar.text(f"Current Strategy: {'Conservative' if investment_strategy <= 0.5 else 'Aggressive'}") # # Main container # st.sidebar.write("## Upload Data") # uploaded_file = st.sidebar.file_uploader("Please upload a CSV file", type="csv", label_visibility="collapsed") # if uploaded_file: # # Displaying the file # data = pd.read_csv(uploaded_file) # st.session_state.classified_data = classify_esg(data) # st.write("### Uploaded News Data:") # st.dataframe(data, use_container_width=True) # if st.button("🔍 Classify ESG"): # st.write("Classifying ESG-related news...") # try: # with st.spinner("Calculating embeddings and similarities..."): # st.session_state.classified_data = classify_esg(st.session_state.classified_data) # st.write("Classified News Data:") # st.dataframe(st.session_state.classified_data, use_container_width=True) # except Exception as e: # st.error(f"An error occurred: {e}") # if st.button("😊 Determine Sentiment"): # st.write("Determining sentiment using GPT...") # # Run sentiment analysis with GPT # try: # with st.spinner("Analyzing sentiment..."): # # Assume you have your API key set and a function defined to handle sentiment analysis # st.session_state.updated_data = update_dataset_with_gpt_sentiment(st.session_state.classified_data, model='gpt-4-turbo-2024-04-09') # st.write("News with GPT-based Sentiment Analysis:") # st.dataframe(st.session_state.updated_data, use_container_width=True) # except Exception as e: # st.error(f"An error occurred: {e}") # if st.button("📊 Alphalens Analysis"): # # process_sentiment_data(sentiment_data = 'finbert_sentiment.csv', sector_ticker = 'sector_ticker.csv', prices = 'prices.csv') # prices = pd.read_csv('prices.csv') # factor_data = pd.read_csv('factor_data.csv') # merged_data = pd.read_csv('merged_data.csv') # alphalens_analysis(merged_data, prices) # # Expander for advanced settings # with st.expander("Advanced Settings"): # st.write("Any advanced settings and configurations will go here.") # if __name__ == "__main__": # main() import streamlit as st import pandas as pd import numpy as np import os import ast import openai from openai import OpenAI import json from getpass import getpass from scipy.spatial.distance import cosine from tqdm import tqdm import matplotlib.pyplot as plt def get_sentiment_gpt(company, SASB, news, max_retries=5, model = 'gpt-4-turbo-2024-04-09'): system_prompt = """ As a specialist in ESG analytics, You possess a deep understanding of evaluating environmental, social, and governance factors in the context of corporate news. Your expertise lies in discerning the underlying sentiment of news segments that pertain to a company's ESG practices, determining whether the coverage reflects a positive, negative, or neutral stance. """ allowed_sentiments = ['Negative', 'Positive', 'Neutral'] attempt = 0 while attempt < max_retries: main_prompt = f""" Classify the sentiment (Only options: Positive, Negative, Neutral) of the following news: {news} | The sentiment classification should be about the sections of the news talking about the company {company}. | The ESG part of the news should be around topics within the following SASB topics {SASB} The output should be a structured JSON object with the key: "sentiment". Here is the format I expect for the JSON object: {{ "sentiment": "Enter 'Positive', 'Neutral', or 'Negative'", }} Do not return any additional text or information outside of this JSON structure. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": main_prompt} ] response = openai.chat.completions.create( model=model, messages=messages, response_format={"type": "json_object"} # Enable JSON mode ) response_json = json.loads(response.choices[0].message.content) json_sentiment = response_json.get('sentiment') if json_sentiment in allowed_sentiments: return json_sentiment attempt += 1 # After max retries, if no valid sentiment is found, handle as needed (e.g., return a default sentiment) print("Failed to obtain a valid sentiment after maximum retries. Defaulting to 'Neutral'.") return 'Neutral' # Default return value if no valid sentiment is obtained def update_dataset_with_gpt_sentiment(df, model, column_name='GPT_based_sentiment'): # Initialize the new column to store GPT-based sentiment df['GPT_based_sentiment'] = None # Use tqdm to show a progress bar for the operation for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows"): # Extract necessary information for each row company = row['Company'] # Make sure this matches your DataFrame's column name SASB = row['SASB'] # Make sure this matches your DataFrame's column name news = row['title & content'] # Make sure this matches your DataFrame's column name # Call the function to get the sentiment sentiment = get_sentiment_gpt(company, SASB, news, model=model) # Update the DataFrame with the obtained sentiment df.at[index, column_name] = sentiment # Now correctly assigns the sentiment return df # Function to get embeddings, provided by you def get_embedding(text, model="text-embedding-3-small"): client = OpenAI() text = text.replace("\n", " ") return client.embeddings.create(input=[text], model=model).data[0].embedding # Function to calculate cosine similarity def cosine_similarity(v1, v2): return 1 - cosine(v1, v2) def calculate_sasb_embeddings(sasb_str): # Safely convert the string representation of a dictionary into an actual dictionary try: sasb_dict = ast.literal_eval(sasb_str) if not isinstance(sasb_dict, dict): raise ValueError("SASB column does not contain a valid dictionary.") except ValueError as e: print(f"Error converting SASB column to dictionary: {e}") return {} sasb_embeddings = {} for topic, content in sasb_dict.items(): # Join the list of keywords into a single string combined_content = ' '.join(content) sasb_embeddings[topic] = get_embedding(combined_content) return sasb_embeddings # Function to process ESG classification def classify_esg(data): # Calculate embeddings for the news data['news_embeddings'] = data['title & content'].apply(get_embedding) # Calculate embeddings for SASB topics (you need to have your SASB topics defined) data['sasb_embeddings'] = data['SASB'].apply(calculate_sasb_embeddings) # Compute cosine similarities data['cosine_similarities'] = data.apply( lambda row: {topic: cosine_similarity(row['news_embeddings'], emb) for topic, emb in row['sasb_embeddings'].items()}, axis=1 ) # Extract max cosine similarity data['max_cosine_similarity'] = data['cosine_similarities'].apply(lambda x: max(x.values())) # Mark the top 10% of news by max_cosine_similarity within each 'Sector' as 'Yes' sector_thresholds = data.groupby('Sector')['max_cosine_similarity'].quantile(0.9).to_dict() data['ESG_relevance'] = data.apply( lambda row: 'Yes' if row['max_cosine_similarity'] >= sector_thresholds[row['Sector']] else 'No', axis=1 ) return data def main(): st.set_page_config(page_title="NLP ESG Project", page_icon="📈") # Custom styles st.markdown( """ """, unsafe_allow_html=True, ) # Header section st.write("# NLP Project: ESG News Analysis and Financial Impact") st.sidebar.write("## Configuration") # API Key input openai_api_key = st.sidebar.text_input("Enter your OpenAI API key", type="password") os.environ["OPENAI_API_KEY"] = openai_api_key openai.api_key = openai_api_key # File Upload st.sidebar.write("## Upload Data") uploaded_file = st.sidebar.file_uploader("", type="csv") # Investment Strategy Slider st.sidebar.markdown("### Investment Strategy") investment_strategy = st.sidebar.slider( "Investment Strategy", min_value=0.0, max_value=1.0, value=0.5, step=0.01, format="", help="0 is Conservative, 1 is Aggressive", label_visibility="collapsed" ) st.sidebar.text(f"Current Strategy: {'Conservative' if investment_strategy <= 0.5 else 'Aggressive'}") # Main container if uploaded_file: # Displaying the file data = pd.read_csv(uploaded_file) st.session_state.classified_data = classify_esg(data) st.write("### Uploaded News Data:") st.dataframe(data, use_container_width=True) if st.button("🔍 Classify ESG"): st.write("Classifying ESG-related news...") try: with st.spinner("Calculating embeddings and similarities..."): st.session_state.classified_data = classify_esg(st.session_state.classified_data) st.write("Classified News Data:") st.dataframe(st.session_state.classified_data, use_container_width=True) except Exception as e: st.error(f"An error occurred: {e}") if st.button("😊 Determine Sentiment"): st.write("Determining sentiment using GPT...") # Run sentiment analysis with GPT try: with st.spinner("Analyzing sentiment..."): # Assume you have your API key set and a function defined to handle sentiment analysis st.session_state.updated_data = update_dataset_with_gpt_sentiment(st.session_state.classified_data, model='gpt-4-turbo-2024-04-09') st.write("News with GPT-based Sentiment Analysis:") st.dataframe(st.session_state.updated_data, use_container_width=True) except Exception as e: st.error(f"An error occurred: {e}") if st.button("📊 Alphalens Analysis"): st.write("Alphalens analysis will be here") # placeholder # Expander for advanced settings with st.expander("Advanced Settings"): st.write("Any advanced settings and configurations will go here.") if __name__ == "__main__": main()