Rundstedtzz commited on
Commit
0876c97
·
1 Parent(s): 89d59ab

upload app.py

Browse files
Files changed (2) hide show
  1. app.py +73 -0
  2. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # !pip install streamlit
2
+ # !pip install pandas
3
+
4
+ import pandas as pd
5
+ import streamlit as st
6
+ import base64
7
+ import io
8
+ import base64
9
+
10
+ # Functions
11
+ def map_data_to_template(mapping_df, template_df, data_df):
12
+ # Initialize the final output dataframe with the template columns, filled with NaN
13
+ final_output_df = pd.DataFrame(columns=template_df.columns)
14
+
15
+ # Prepare a dictionary to hold the mapping from MEDLab to NDA variables
16
+ variable_mapping = mapping_df.set_index('MEDLab Variable')['NDA Variable'].to_dict()
17
+
18
+ # Iterate over each NDA variable to map the data
19
+ for nda_var in final_output_df.columns:
20
+ medlab_vars = [medlab_var for medlab_var, nda_mapped_var in variable_mapping.items() if nda_mapped_var == nda_var]
21
+
22
+ # Initialize the column with None
23
+ final_output_df[nda_var] = [None] * len(data_df)
24
+
25
+ # Go through each potential MEDLab variable until we find one that's present and has data
26
+ for medlab_var in medlab_vars:
27
+ if medlab_var in data_df.columns and not data_df[medlab_var].isnull().all():
28
+ # If a date column, convert to the specified format
29
+ if 'date' in medlab_var:
30
+ final_output_df[nda_var] = pd.to_datetime(data_df[medlab_var], errors='coerce').dt.strftime('%m/%d/%Y')
31
+ else:
32
+ final_output_df[nda_var] = data_df[medlab_var]
33
+ break # Stop checking once we've mapped one
34
+
35
+ return final_output_df
36
+
37
+
38
+ # Streamlit app
39
+ def main():
40
+ st.markdown("<h1 style='text-align: center; color: #E694FF;'>Data Transformer</h1>", unsafe_allow_html=True)
41
+
42
+ # File Uploader for each CSV
43
+ st.subheader("Upload Files")
44
+ nimh_template_file = st.file_uploader("Choose NIMH Template CSV", type=['csv'])
45
+ redcap_data_file = st.file_uploader("Choose REDCap Data CSV", type=['csv'])
46
+ conversion_key_file = st.file_uploader("Choose Conversion Key CSV", type=['csv'])
47
+
48
+ if nimh_template_file and redcap_data_file and conversion_key_file:
49
+ # Convert the file objects to DataFrames
50
+ nimh_template_df = pd.read_csv(io.StringIO(nimh_template_file.getvalue().decode('utf-8')), skiprows=1)
51
+ redcap_data_df = pd.read_csv(io.StringIO(redcap_data_file.getvalue().decode('utf-8')))
52
+ conversion_key_df = pd.read_csv(io.StringIO(conversion_key_file.getvalue().decode('utf-8')))
53
+
54
+ transformed_data_df = map_data_to_template(
55
+ conversion_key_df,
56
+ nimh_template_df,
57
+ redcap_data_df
58
+ )
59
+
60
+ # Display transformed data
61
+ st.subheader("Transformed Data")
62
+ st.write(transformed_data_df)
63
+
64
+ # Download button for transformed data
65
+ st.subheader("Download Transformed Data")
66
+ csv = transformed_data_df.to_csv(index=False)
67
+ b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here
68
+ href = f'<a href="data:file/csv;base64,{b64}" download="transformed_data.csv">Download CSV File</a>'
69
+ st.markdown(href, unsafe_allow_html=True)
70
+
71
+
72
+ if __name__ == '__main__':
73
+ main()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ streamlit
2
+ pandas