Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import google.generativeai as genai
|
3 |
+
from geopy.geocoders import Nominatim
|
4 |
+
# from geopy.exc import GeocoderTimedOut, GeocoderUnavailable # Not explicitly caught, requests.timeout handles
|
5 |
+
import folium
|
6 |
+
from streamlit_folium import st_folium
|
7 |
+
import pandas as pd
|
8 |
+
import requests
|
9 |
+
import re
|
10 |
+
import os
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
|
13 |
+
# --- Page Configuration ---
|
14 |
+
st.set_page_config(
|
15 |
+
layout="wide",
|
16 |
+
page_title="Landslide Factor Explorer | India", # More professional title
|
17 |
+
page_icon="๐๏ธ", # Favicon
|
18 |
+
initial_sidebar_state="collapsed"
|
19 |
+
)
|
20 |
+
# Custom CSS for enhanced UI
|
21 |
+
st.markdown("""
|
22 |
+
<style>
|
23 |
+
/* Main styling */
|
24 |
+
.main .block-container {
|
25 |
+
padding-top: 1rem; /* Reduced top padding */
|
26 |
+
padding-bottom: 2rem;
|
27 |
+
padding-left: 2rem; /* Added horizontal padding */
|
28 |
+
padding-right: 2rem; /* Added horizontal padding */
|
29 |
+
}
|
30 |
+
|
31 |
+
/* Header styling */
|
32 |
+
h1, h2, h3, h4, h5 {
|
33 |
+
font-family: 'Roboto', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
34 |
+
color: #2c3e50; /* Dark blue-gray for headers */
|
35 |
+
}
|
36 |
+
h1 {
|
37 |
+
color: #1f618d; /* Slightly different color for main title if needed */
|
38 |
+
}
|
39 |
+
|
40 |
+
/* Card-like containers */
|
41 |
+
.card {
|
42 |
+
background-color: #FFFFFF;
|
43 |
+
border-radius: 12px; /* Softer radius */
|
44 |
+
padding: 20px;
|
45 |
+
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08); /* Softer shadow */
|
46 |
+
margin-bottom: 20px;
|
47 |
+
border: 1px solid #e0e0e0; /* Light border */
|
48 |
+
}
|
49 |
+
.data-card { /* Specific card for data sections */
|
50 |
+
background-color: #f9f9f9; /* Slightly off-white */
|
51 |
+
border-radius: 10px;
|
52 |
+
padding: 15px;
|
53 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
|
54 |
+
margin-bottom: 15px;
|
55 |
+
border-left: 5px solid #3498db; /* Accent color */
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
/* For metric containers */
|
60 |
+
.metric-container {
|
61 |
+
background-color: #f8f9fa; /* Lighter background */
|
62 |
+
border-radius: 8px;
|
63 |
+
padding: 15px;
|
64 |
+
border-left: 4px solid #1abc9c; /* Green accent */
|
65 |
+
margin-bottom: 10px;
|
66 |
+
text-align: center;
|
67 |
+
}
|
68 |
+
.stMetric { /* Target Streamlit's metric component */
|
69 |
+
background-color: #ffffff;
|
70 |
+
border-radius: 8px;
|
71 |
+
padding: 15px 20px;
|
72 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
73 |
+
border: 1px solid #eee;
|
74 |
+
}
|
75 |
+
.stMetric > label { /* Metric label */
|
76 |
+
font-weight: 500 !important;
|
77 |
+
color: #555 !important;
|
78 |
+
}
|
79 |
+
.stMetric > div:nth-child(2) > div { /* Metric value */
|
80 |
+
font-size: 1.6em !important;
|
81 |
+
font-weight: 600 !important;
|
82 |
+
color: #2c3e50 !important;
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
/* For maps */
|
87 |
+
.map-container {
|
88 |
+
border-radius: 12px;
|
89 |
+
overflow: hidden;
|
90 |
+
border: 1px solid #ddd;
|
91 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.05);
|
92 |
+
}
|
93 |
+
|
94 |
+
/* KPI badges (using Streamlit's delta color logic more directly) */
|
95 |
+
/* .stMetric [data-testid="stMetricDelta"] { ... } if specific styling is needed */
|
96 |
+
|
97 |
+
|
98 |
+
/* Data visualization enhancements */
|
99 |
+
.data-viz { /* For charts */
|
100 |
+
border-radius: 8px;
|
101 |
+
overflow: hidden;
|
102 |
+
border: 1px solid #eaeaea;
|
103 |
+
padding: 10px;
|
104 |
+
background-color: #fff;
|
105 |
+
}
|
106 |
+
|
107 |
+
/* Dividers */
|
108 |
+
hr {
|
109 |
+
margin: 30px 0;
|
110 |
+
border: 0;
|
111 |
+
height: 1px;
|
112 |
+
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(44, 62, 80, 0.2), rgba(0, 0, 0, 0));
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Button enhancements */
|
116 |
+
.stButton>button {
|
117 |
+
border-radius: 25px;
|
118 |
+
font-weight: 600;
|
119 |
+
padding: 10px 20px;
|
120 |
+
transition: all 0.2s ease-in-out;
|
121 |
+
border: 1px solid #3498db; /* Primary color border */
|
122 |
+
background-color: #3498db; /* Primary color */
|
123 |
+
color: white;
|
124 |
+
}
|
125 |
+
.stButton>button:hover {
|
126 |
+
transform: translateY(-2px);
|
127 |
+
box-shadow: 0 5px 10px rgba(52, 152, 219, 0.3);
|
128 |
+
background-color: #2980b9; /* Darker shade on hover */
|
129 |
+
border-color: #2980b9;
|
130 |
+
}
|
131 |
+
.stButton>button[kind="secondary"] { /* For reset button */
|
132 |
+
background-color: #e74c3c;
|
133 |
+
border-color: #e74c3c;
|
134 |
+
}
|
135 |
+
.stButton>button[kind="secondary"]:hover {
|
136 |
+
background-color: #c0392b;
|
137 |
+
border-color: #c0392b;
|
138 |
+
box-shadow: 0 5px 10px rgba(231, 76, 60, 0.3);
|
139 |
+
}
|
140 |
+
|
141 |
+
|
142 |
+
/* Tab styling */
|
143 |
+
.stTabs [data-baseweb="tab-list"] {
|
144 |
+
gap: 10px; /* Increased gap */
|
145 |
+
border-bottom: 2px solid #ddd; /* Underline for tab list */
|
146 |
+
}
|
147 |
+
.stTabs [data-baseweb="tab"] {
|
148 |
+
border-radius: 6px 6px 0px 0px;
|
149 |
+
padding: 12px 18px; /* More padding */
|
150 |
+
font-weight: 600; /* Bolder */
|
151 |
+
background-color: #f0f2f6; /* Light background for inactive tabs */
|
152 |
+
color: #555;
|
153 |
+
transition: background-color 0.2s, color 0.2s;
|
154 |
+
}
|
155 |
+
.stTabs [data-baseweb="tab--selected"] {
|
156 |
+
background-color: #3498db; /* Primary color for selected tab */
|
157 |
+
color: white;
|
158 |
+
border-bottom: 2px solid #3498db; /* Ensure it aligns with tab list border */
|
159 |
+
}
|
160 |
+
|
161 |
+
/* Primary header styling */
|
162 |
+
.main-header {
|
163 |
+
background: white;
|
164 |
+
color: #000080; /* Navy Blue - from original, kept for consistency */
|
165 |
+
padding: 15px 25px;
|
166 |
+
border-radius: 12px;
|
167 |
+
margin-bottom: 25px;
|
168 |
+
text-align: center;
|
169 |
+
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
|
170 |
+
}
|
171 |
+
.main-header h1 {
|
172 |
+
margin: 0;
|
173 |
+
font-size: 2.2em;
|
174 |
+
font-weight: 700;
|
175 |
+
color: #2c3e50; /* Overriding the general h1 for this specific header */
|
176 |
+
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
177 |
+
}
|
178 |
+
|
179 |
+
/* Warning box styling */
|
180 |
+
.warning-box {
|
181 |
+
background-color: #fff9e6; /* Lighter yellow */
|
182 |
+
border-left: 6px solid #ffc107;
|
183 |
+
color: #856404;
|
184 |
+
padding: 20px;
|
185 |
+
border-radius: 8px;
|
186 |
+
margin: 20px 0;
|
187 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
188 |
+
}
|
189 |
+
.warning-box h3 {
|
190 |
+
margin-top: 0;
|
191 |
+
color: #856404; /* Match text color */
|
192 |
+
font-weight: 600;
|
193 |
+
}
|
194 |
+
.warning-box ul {
|
195 |
+
padding-left: 20px;
|
196 |
+
margin-bottom: 0;
|
197 |
+
}
|
198 |
+
|
199 |
+
/* KPI metrics overall container styling */
|
200 |
+
.kpi-grid {
|
201 |
+
display: grid;
|
202 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
203 |
+
gap: 15px;
|
204 |
+
margin-bottom: 20px;
|
205 |
+
}
|
206 |
+
|
207 |
+
/* Footer styling */
|
208 |
+
.footer {
|
209 |
+
margin-top: 40px;
|
210 |
+
text-align: center;
|
211 |
+
padding: 25px;
|
212 |
+
background-color: #34495e; /* Dark footer */
|
213 |
+
color: #ecf0f1; /* Light text for dark footer */
|
214 |
+
border-radius: 10px 10px 0 0; /* Rounded top corners */
|
215 |
+
font-size: 0.9em;
|
216 |
+
}
|
217 |
+
.footer a {
|
218 |
+
color: #3498db; /* Link color */
|
219 |
+
text-decoration: none;
|
220 |
+
}
|
221 |
+
.footer a:hover {
|
222 |
+
text-decoration: underline;
|
223 |
+
}
|
224 |
+
|
225 |
+
/* Search box enhancement */
|
226 |
+
.search-container .stTextInput input {
|
227 |
+
border-radius: 25px !important;
|
228 |
+
padding: 12px 20px !important;
|
229 |
+
border: 1px solid #bdc3c7 !important; /* Light gray border */
|
230 |
+
box-shadow: none !important; /* Remove default Streamlit shadow */
|
231 |
+
transition: border-color 0.2s, box-shadow 0.2s;
|
232 |
+
}
|
233 |
+
.search-container .stTextInput input:focus {
|
234 |
+
border-color: #3498db !important; /* Primary color on focus */
|
235 |
+
box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.2) !important;
|
236 |
+
}
|
237 |
+
|
238 |
+
/* Styling for info/success messages */
|
239 |
+
.stAlert > div[data-baseweb="alert"] {
|
240 |
+
border-radius: 8px !important;
|
241 |
+
}
|
242 |
+
|
243 |
+
/* Section headers */
|
244 |
+
.section-header {
|
245 |
+
margin-top: 25px;
|
246 |
+
margin-bottom: 15px;
|
247 |
+
padding-bottom: 5px;
|
248 |
+
border-bottom: 2px solid #3498db; /* Primary color underline */
|
249 |
+
display: inline-block; /* To make border only as wide as text */
|
250 |
+
}
|
251 |
+
.section-header h4 {
|
252 |
+
margin-bottom: 0;
|
253 |
+
color: #3498db; /* Primary color for section titles */
|
254 |
+
}
|
255 |
+
|
256 |
+
/* Expander styling */
|
257 |
+
.stExpander {
|
258 |
+
border: 1px solid #e0e0e0 !important;
|
259 |
+
border-radius: 8px !important;
|
260 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.03) !important;
|
261 |
+
}
|
262 |
+
.stExpander header {
|
263 |
+
background-color: #f8f9fa !important;
|
264 |
+
border-radius: 8px 8px 0 0 !important; /* Match expander radius */
|
265 |
+
padding: 10px 15px !important;
|
266 |
+
}
|
267 |
+
|
268 |
+
</style>
|
269 |
+
""", unsafe_allow_html=True)
|
270 |
+
|
271 |
+
# --- Gemini API Key Handling ---
|
272 |
+
API_KEY = os.getenv("GOOGLE_API_KEY", "AIzaSyDkiYr-eSkqIXpZ1fHlik_YFsFtfQoFi0w") # Use yours, or allow env var
|
273 |
+
if not API_KEY or API_KEY == "YOUR_API_KEY_HERE": # Default check
|
274 |
+
st.sidebar.error("๐ด GOOGLE_API_KEY not set. Please set it as an environment variable or enter below.")
|
275 |
+
API_KEY = st.sidebar.text_input("Enter your Gemini API Key:", type="password", key="api_key_input_explorer_v4")
|
276 |
+
|
277 |
+
if API_KEY and API_KEY != "YOUR_API_KEY_HERE":
|
278 |
+
try:
|
279 |
+
genai.configure(api_key=API_KEY)
|
280 |
+
except Exception as e:
|
281 |
+
st.error(f"Error configuring Gemini API: {e}")
|
282 |
+
st.stop()
|
283 |
+
else:
|
284 |
+
st.error("๐ด Gemini API Key is required to run this application.")
|
285 |
+
st.stop()
|
286 |
+
|
287 |
+
# --- Services & Constants ---
|
288 |
+
geolocator = Nominatim(user_agent="india_landslide_explorer_v4")
|
289 |
+
FORECAST_DAYS = 14
|
290 |
+
SEISMIC_RADIUS_KM = 150
|
291 |
+
SEISMIC_MIN_MAGNITUDE = 4.0
|
292 |
+
SEISMIC_DAYS_AGO = 30
|
293 |
+
|
294 |
+
# --- Session State Initialization ---
|
295 |
+
if 'map_center_india' not in st.session_state: st.session_state.map_center_india = [20.5937, 78.9629]
|
296 |
+
if 'map_zoom_india' not in st.session_state: st.session_state.map_zoom_india = 4
|
297 |
+
if 'selected_lat_lon' not in st.session_state: st.session_state.selected_lat_lon = None
|
298 |
+
if 'location_name' not in st.session_state: st.session_state.location_name = ""
|
299 |
+
if 'exploration_output' not in st.session_state: st.session_state.exploration_output = {"kpi_data": {}, "detailed_text": {}}
|
300 |
+
if 'api_data_fetched' not in st.session_state: st.session_state.api_data_fetched = {}
|
301 |
+
if 'is_fetching_data' not in st.session_state: st.session_state.is_fetching_data = False
|
302 |
+
|
303 |
+
|
304 |
+
# --- Helper Functions (get_elevation, fetch_rainfall_data, fetch_seismic_data, reverse_geocode) ---
|
305 |
+
def get_elevation(lat, lon):
|
306 |
+
try:
|
307 |
+
url = f"https://api.open-meteo.com/v1/elevation?latitude={lat}&longitude={lon}"
|
308 |
+
response = requests.get(url, timeout=10)
|
309 |
+
response.raise_for_status()
|
310 |
+
data = response.json()
|
311 |
+
return data['elevation'][0]
|
312 |
+
except Exception: return "N/A"
|
313 |
+
|
314 |
+
def fetch_rainfall_data(lat, lon, forecast_days_count=FORECAST_DAYS):
|
315 |
+
url = "https://api.open-meteo.com/v1/forecast"
|
316 |
+
params = {
|
317 |
+
"latitude": lat, "longitude": lon,
|
318 |
+
"daily": "precipitation_sum,precipitation_hours",
|
319 |
+
"current": "precipitation,rain,showers,snowfall",
|
320 |
+
"forecast_days": forecast_days_count, "timezone": "auto"
|
321 |
+
}
|
322 |
+
try:
|
323 |
+
response = requests.get(url, params=params, timeout=15)
|
324 |
+
response.raise_for_status()
|
325 |
+
data = response.json()
|
326 |
+
current_data = data.get("current", {})
|
327 |
+
daily_data = data.get("daily", {})
|
328 |
+
df_daily_forecast = pd.DataFrame()
|
329 |
+
if daily_data.get("time") and daily_data.get("precipitation_sum"):
|
330 |
+
df_daily_forecast = pd.DataFrame({
|
331 |
+
"Date": pd.to_datetime(daily_data["time"]),
|
332 |
+
"Rainfall_Sum (mm)": daily_data["precipitation_sum"],
|
333 |
+
"Precipitation_Hours (hrs)": daily_data.get("precipitation_hours", [0]*len(daily_data["time"]))
|
334 |
+
}).set_index("Date")
|
335 |
+
return {
|
336 |
+
"current_precipitation_mm": current_data.get("precipitation", "N/A"),
|
337 |
+
"current_rain_mm": current_data.get("rain", "N/A"),
|
338 |
+
"current_showers_mm": current_data.get("showers", "N/A"),
|
339 |
+
"current_snowfall_cm": current_data.get("snowfall", "N/A"),
|
340 |
+
"daily_forecast_df": df_daily_forecast
|
341 |
+
}
|
342 |
+
except Exception as e:
|
343 |
+
st.toast(f"Weather fetch error: {e}", icon="๐ฆ๏ธ")
|
344 |
+
return {"current_precipitation_mm": "Error", "daily_forecast_df": pd.DataFrame()}
|
345 |
+
|
346 |
+
def fetch_seismic_data(lat, lon, radius_km=SEISMIC_RADIUS_KM, min_mag=SEISMIC_MIN_MAGNITUDE, days_ago=SEISMIC_DAYS_AGO):
|
347 |
+
try:
|
348 |
+
end_time = datetime.utcnow()
|
349 |
+
start_time = end_time - timedelta(days=days_ago)
|
350 |
+
url = "https://earthquake.usgs.gov/fdsnws/event/1/query"
|
351 |
+
params = {
|
352 |
+
"format": "geojson", "latitude": lat, "longitude": lon,
|
353 |
+
"maxradiuskm": radius_km, "minmagnitude": min_mag,
|
354 |
+
"starttime": start_time.strftime("%Y-%m-%dT%H:%M:%S"),
|
355 |
+
"endtime": end_time.strftime("%Y-%m-%dT%H:%M:%S"), "orderby": "time"
|
356 |
+
}
|
357 |
+
response = requests.get(url, params=params, timeout=15)
|
358 |
+
response.raise_for_status()
|
359 |
+
data = response.json()
|
360 |
+
earthquakes = []
|
361 |
+
for feature in data.get("features", []):
|
362 |
+
props = feature.get("properties", {}); geom = feature.get("geometry", {})
|
363 |
+
if props and geom and props.get("mag") is not None and geom.get("coordinates"):
|
364 |
+
earthquakes.append({
|
365 |
+
"place": props.get("place", "Unknown"), "magnitude": props.get("mag"),
|
366 |
+
"time": datetime.utcfromtimestamp(props.get("time") / 1000).strftime('%Y-%m-%d %H:%M UTC'),
|
367 |
+
"depth_km": geom.get("coordinates")[2] if len(geom.get("coordinates", [])) > 2 else "N/A",
|
368 |
+
"url": props.get("url")})
|
369 |
+
return earthquakes
|
370 |
+
except Exception as e:
|
371 |
+
st.toast(f"Seismic fetch error: {e}", icon="๐"); return []
|
372 |
+
|
373 |
+
def reverse_geocode(lat, lon):
|
374 |
+
try:
|
375 |
+
location = geolocator.reverse((lat, lon), exactly_one=True, timeout=10)
|
376 |
+
return location.address if location else "Unknown location"
|
377 |
+
except Exception: return "Could not determine address"
|
378 |
+
|
379 |
+
# --- Gemini Prompt and Parsing V4 ---
|
380 |
+
def get_gemini_exploration_v4(location_name, lat_lon, api_data):
|
381 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
382 |
+
|
383 |
+
elevation_str = f"{api_data.get('elevation_m', 'N/A')}"
|
384 |
+
weather_data = api_data.get('weather', {})
|
385 |
+
current_precip_str = f"{weather_data.get('current_precipitation_mm', 'N/A')}"
|
386 |
+
forecast_df = weather_data.get('daily_forecast_df')
|
387 |
+
forecast_summary_str = "N/A"
|
388 |
+
if forecast_df is not None and not forecast_df.empty:
|
389 |
+
summary_days = min(7, len(forecast_df))
|
390 |
+
forecast_days_summary = [f"Day {i+1} ({forecast_df.index[i].strftime('%Y-%m-%d')}): {forecast_df['Rainfall_Sum (mm)'].iloc[i] if pd.notna(forecast_df['Rainfall_Sum (mm)'].iloc[i]) else 'N/A'} mm" for i in range(summary_days)]
|
391 |
+
forecast_summary_str = "; ".join(forecast_days_summary) if forecast_days_summary else "No forecast data."
|
392 |
+
elif isinstance(forecast_df, pd.DataFrame) and forecast_df.empty:
|
393 |
+
forecast_summary_str = "Forecast data empty/unavailable."
|
394 |
+
|
395 |
+
seismic_events = api_data.get('seismic', [])
|
396 |
+
seismic_summary_str = "No significant recent seismic activity reported by USGS in the vicinity."
|
397 |
+
if seismic_events:
|
398 |
+
event_strs = [f"Mag {event['magnitude']} event near {event['place'].split('of')[-1].strip() if 'of' in event['place'] else event['place']}, on {event['time'].split(' ')[0]}" for event in seismic_events[:2]]
|
399 |
+
seismic_summary_str = "Recent Seismic Activity: " + "; ".join(event_strs)
|
400 |
+
if len(seismic_events) > 2: seismic_summary_str += f"; and {len(seismic_events)-2} more similar events."
|
401 |
+
|
402 |
+
prompt = f"""
|
403 |
+
You are an AI assistant for an advanced educational landslide factor exploration tool focused on INDIA (Version 4 - Visual Focus).
|
404 |
+
This tool DOES NOT use specific user observations of local conditions.
|
405 |
+
Your discussion will be based on the provided general location, fetched API data (elevation, weather, recent seismic activity), and your broad knowledge of Indian geography, geology, land cover, and climate.
|
406 |
+
This is strictly for educational purposes to explore POTENTIAL factors for a TYPE of area, NOT a real-time prediction or specific site assessment.
|
407 |
+
|
408 |
+
Location & Fetched Data:
|
409 |
+
- Approximate Location Name: "{location_name}" (Lat/Lon: {lat_lon[0]:.4f}, {lat_lon[1]:.4f})
|
410 |
+
- Elevation: {elevation_str} meters
|
411 |
+
- Current Precipitation Summary: {current_precip_str} mm
|
412 |
+
- Rainfall Forecast Summary (e.g., next 7 days): {forecast_summary_str}
|
413 |
+
- Recent Seismic Activity Summary (within ~{SEISMIC_RADIUS_KM}km, M{SEISMIC_MIN_MAGNITUDE}+, last {SEISMIC_DAYS_AGO} days): {seismic_summary_str}
|
414 |
+
|
415 |
+
Task:
|
416 |
+
Based on the above information and your general knowledge, please provide the following structured exploration.
|
417 |
+
First, provide specific KPI data, then provide the detailed textual explanations.
|
418 |
+
|
419 |
+
KPI_DATA_START
|
420 |
+
GENERAL_SUSCEPTIBILITY_LEVEL: [Provide one single category: Low / Moderate / High / Very High - based on typical regional characteristics for this type of area]
|
421 |
+
RAINFALL_IMPACT_ASSESSMENT: [Provide one single category: Low Concern / Moderate Concern / Significant Concern / High Concern - regarding its potential to trigger landslides in this type of area given the forecast and typical seasonal patterns]
|
422 |
+
SEISMIC_IMPACT_ASSESSMENT: [Provide one single category: Negligible / Low Potential / Moderate Potential / Significant Potential - as a landslide trigger in this type of area, considering reported activity and general regional seismicity]
|
423 |
+
TOP_HYPOTHETICAL_LANDSLIDE_TYPES: [List up to 3 most common/likely landslide types for similar regions in India, separated by commas, e.g., Debris Flow, Rockfall, Rotational Slump]
|
424 |
+
KEY_CONTRIBUTING_FACTORS_POINTS:
|
425 |
+
- [Brief point (max 10 words) on a key natural factor, e.g., Steep topography typical of the region]
|
426 |
+
- [Brief point (max 10 words) on a key human-induced factor, e.g., Unplanned construction if prevalent in similar areas]
|
427 |
+
- [Brief point (max 10 words) on another critical factor, e.g., Intense monsoon rainfall patterns]
|
428 |
+
TYPICAL_LAND_COVER_INFERRED: [Describe in 1-3 words the most typical general land cover you infer for this type of region, e.g., Forested Slopes, Agricultural Terraces, Urbanizing Hillsides, Barren Rocky Terrain]
|
429 |
+
KPI_DATA_END
|
430 |
+
|
431 |
+
Now, provide the detailed textual explanations, structured with the following headers:
|
432 |
+
|
433 |
+
HEADER_KEY_INSIGHTS_SUMMARY
|
434 |
+
Provide 2-3 bullet points elaborating on the most critical potential landslide-related insights or considerations for this TYPE of area in India, building upon the KPI data.
|
435 |
+
|
436 |
+
HEADER_SUSCEPTIBILITY_DISCUSSION
|
437 |
+
A. General Discussion of Landslide Susceptibility for this TYPE of Area:
|
438 |
+
(Elaborate on the GENERAL_SUSCEPTIBILITY_LEVEL. Discuss typical geological features, soil types, or topographical characteristics for this type of area. Ensure the output for GENERAL_SUSCEPTIBILITY_LEVEL provided in KPI_DATA_START is consistent with this discussion and includes "General Susceptibility for this type of area: " before the level, e.g., "General Susceptibility for this type of area: Moderate").
|
439 |
+
|
440 |
+
HEADER_DATA_ANALYSIS
|
441 |
+
B. Analysis of Fetched Data in Context of Potential Landslides:
|
442 |
+
(Elaborate on RAINFALL_IMPACT_ASSESSMENT and SEISMIC_IMPACT_ASSESSMENT. Discuss how fetched rainfall, elevation, and seismic data influence landslide potential, considering seasonal patterns and regional context).
|
443 |
+
|
444 |
+
HEADER_HYPOTHETICAL_FACTORS
|
445 |
+
C. Hypothetical Contributing Factors (Beyond Fetched Data):
|
446 |
+
(Elaborate on KEY_CONTRIBUTING_FACTORS_POINTS and TYPICAL_LAND_COVER_INFERRED. Discuss typical land cover and other natural/human-induced factors common to such regions in India).
|
447 |
+
|
448 |
+
HEADER_COMMON_LANDSLIDE_TYPES
|
449 |
+
D. Common Landslide Types in Similar Indian Regions:
|
450 |
+
(Elaborate on TOP_HYPOTHETICAL_LANDSLIDE_TYPES. Describe their characteristics and triggers relevant to the scenario).
|
451 |
+
|
452 |
+
HEADER_CRITICAL_LOCAL_DATA_NEED
|
453 |
+
E. Critical Importance of Local Site-Specific Data (Emphasize very strongly!):
|
454 |
+
(Explain why absence of local observations makes specific risk assessment impossible. Detail necessary local data).
|
455 |
+
|
456 |
+
HEADER_AWARENESS_PREPAREDNESS
|
457 |
+
F. General Awareness & Preparedness Ideas (India Context):
|
458 |
+
(Suggest general, non-site-specific educational points on landslide awareness/preparedness).
|
459 |
+
|
460 |
+
HEADER_OFFICIAL_RESOURCES
|
461 |
+
G. Official Indian Resources & Further Learning:
|
462 |
+
(List key Indian government agencies and information sources).
|
463 |
+
|
464 |
+
Structure your response exactly with the specified KPI_DATA_START/END and HEADER_ SECTION NAMES.
|
465 |
+
Maintain an educational tone. Explicitly and repeatedly state the limitations.
|
466 |
+
"""
|
467 |
+
try:
|
468 |
+
response = model.generate_content(prompt)
|
469 |
+
return response.text
|
470 |
+
except Exception as e:
|
471 |
+
st.error(f"Error communicating with Gemini API: {e}")
|
472 |
+
return None
|
473 |
+
|
474 |
+
def parse_gemini_output_v4(text):
|
475 |
+
if not text: return {"kpi_data": {}, "detailed_text": {}}
|
476 |
+
|
477 |
+
kpi_data = {}
|
478 |
+
default_kpi_values = {
|
479 |
+
"GENERAL_SUSCEPTIBILITY_LEVEL": "N/A",
|
480 |
+
"RAINFALL_IMPACT_ASSESSMENT": "N/A",
|
481 |
+
"SEISMIC_IMPACT_ASSESSMENT": "N/A",
|
482 |
+
"TOP_HYPOTHETICAL_LANDSLIDE_TYPES": "Not specified",
|
483 |
+
"KEY_CONTRIBUTING_FACTORS_POINTS": [],
|
484 |
+
"TYPICAL_LAND_COVER_INFERRED": "N/A"
|
485 |
+
}
|
486 |
+
kpi_data.update(default_kpi_values)
|
487 |
+
|
488 |
+
detailed_text_sections_map = {
|
489 |
+
"HEADER_KEY_INSIGHTS_SUMMARY": "๐ Key Insights Summary",
|
490 |
+
"HEADER_SUSCEPTIBILITY_DISCUSSION": "๐ง General Susceptibility Discussion",
|
491 |
+
"HEADER_DATA_ANALYSIS": "๐ Analysis of Fetched Data",
|
492 |
+
"HEADER_HYPOTHETICAL_FACTORS": "๐ค Contributing Factors",
|
493 |
+
"HEADER_COMMON_LANDSLIDE_TYPES": "๐๏ธ Common Landslide Types",
|
494 |
+
"HEADER_CRITICAL_LOCAL_DATA_NEED": "โCRUCIAL: Need for Local Site-Specific Dataโ",
|
495 |
+
"HEADER_AWARENESS_PREPAREDNESS": "๐ก General Awareness & Preparedness",
|
496 |
+
"HEADER_OFFICIAL_RESOURCES": "๐ฎ๐ณ Official Resources & Further Learning"
|
497 |
+
}
|
498 |
+
parsed_detailed_text = {display_name: [] for _, display_name in detailed_text_sections_map.items()}
|
499 |
+
|
500 |
+
in_kpi_section = False
|
501 |
+
current_detailed_section_key = None
|
502 |
+
key_factors_collecting = False
|
503 |
+
|
504 |
+
kpi_regex_map = {
|
505 |
+
"GENERAL_SUSCEPTIBILITY_LEVEL": re.compile(r"GENERAL_SUSCEPTIBILITY_LEVEL:\s*(.+)", re.IGNORECASE),
|
506 |
+
"RAINFALL_IMPACT_ASSESSMENT": re.compile(r"RAINFALL_IMPACT_ASSESSMENT:\s*(.+)", re.IGNORECASE),
|
507 |
+
"SEISMIC_IMPACT_ASSESSMENT": re.compile(r"SEISMIC_IMPACT_ASSESSMENT:\s*(.+)", re.IGNORECASE),
|
508 |
+
"TOP_HYPOTHETICAL_LANDSLIDE_TYPES": re.compile(r"TOP_HYPOTHETICAL_LANDSLIDE_TYPES:\s*(.+)", re.IGNORECASE),
|
509 |
+
"TYPICAL_LAND_COVER_INFERRED": re.compile(r"TYPICAL_LAND_COVER_INFERRED:\s*(.+)", re.IGNORECASE),
|
510 |
+
}
|
511 |
+
|
512 |
+
for line in text.splitlines():
|
513 |
+
line_strip = line.strip()
|
514 |
+
if not line_strip: continue
|
515 |
+
|
516 |
+
if line_strip == "KPI_DATA_START":
|
517 |
+
in_kpi_section = True; continue
|
518 |
+
if line_strip == "KPI_DATA_END":
|
519 |
+
in_kpi_section = False; key_factors_collecting = False; continue
|
520 |
+
|
521 |
+
if in_kpi_section:
|
522 |
+
matched_specific_kpi = False
|
523 |
+
for key, pattern in kpi_regex_map.items():
|
524 |
+
match = pattern.match(line_strip)
|
525 |
+
if match:
|
526 |
+
kpi_data[key] = match.group(1).strip()
|
527 |
+
matched_specific_kpi = True; break
|
528 |
+
if matched_specific_kpi: continue
|
529 |
+
|
530 |
+
if line_strip.startswith("KEY_CONTRIBUTING_FACTORS_POINTS:"):
|
531 |
+
key_factors_collecting = True; kpi_data["KEY_CONTRIBUTING_FACTORS_POINTS"] = [] # Reset for new parse
|
532 |
+
continue
|
533 |
+
|
534 |
+
if key_factors_collecting and line_strip.startswith("-"):
|
535 |
+
kpi_data["KEY_CONTRIBUTING_FACTORS_POINTS"].append(line_strip.lstrip("- ").strip())
|
536 |
+
continue
|
537 |
+
|
538 |
+
found_new_header = False
|
539 |
+
for header_key_from_prompt, display_name in detailed_text_sections_map.items():
|
540 |
+
if line_strip == header_key_from_prompt:
|
541 |
+
current_detailed_section_key = display_name
|
542 |
+
found_new_header = True; break
|
543 |
+
if not found_new_header and current_detailed_section_key:
|
544 |
+
parsed_detailed_text[current_detailed_section_key].append(line)
|
545 |
+
|
546 |
+
final_detailed_text = {k: "\n".join(v).strip() for k, v in parsed_detailed_text.items()}
|
547 |
+
return {"kpi_data": kpi_data, "detailed_text": final_detailed_text}
|
548 |
+
|
549 |
+
# --- UI Rendering with Enhanced Styling ---
|
550 |
+
st.markdown('<div class="main-header"><h1>๐ฎ๐ณ India Landslide Factor Explorer V4</h1></div>', unsafe_allow_html=True)
|
551 |
+
st.caption("Educational Tool by Google Gemini & Streamlit - Exploring Potential Landslide Factors")
|
552 |
+
|
553 |
+
|
554 |
+
|
555 |
+
|
556 |
+
st.markdown("""
|
557 |
+
<div class="card">
|
558 |
+
<h3>๐บ๏ธ How to Use This Tool</h3>
|
559 |
+
<p>Welcome! Begin by <strong>selecting a location on the map</strong> or using the <strong>search bar</strong> to find a specific place in India.
|
560 |
+
The tool will then fetch publicly available data (elevation, weather forecast, recent seismic activity) for the chosen area.
|
561 |
+
After data retrieval, you can initiate an AI-powered exploration. The AI will provide a <em>generalized discussion</em> on potential landslide susceptibility and contributing factors relevant to that <strong>type of area in India</strong>, based on the fetched data and its broad geographical knowledge.</p>
|
562 |
+
</div>
|
563 |
+
""", unsafe_allow_html=True)
|
564 |
+
|
565 |
+
st.markdown("""
|
566 |
+
<div class="warning-box">
|
567 |
+
<h3>โ ๏ธ CRITICAL DISCLAIMER & LIMITATIONS</h3>
|
568 |
+
<ul>
|
569 |
+
<li>This tool <strong>DOES NOT use any specific local observations or detailed site-specific geotechnical data</strong>.</li>
|
570 |
+
<li>The AI-generated discussion is <strong>HIGHLY GENERALIZED, HYPOTHETICAL, and intended for BROAD EDUCATIONAL PURPOSES ONLY</strong>.</li>
|
571 |
+
<li><strong>IT IS NOT A PREDICTION, nor a real-time warning system, nor a site-specific risk assessment.</strong> It cannot replace professional engineering or geological surveys.</li>
|
572 |
+
<li>For actual safety information, risk assessment, or emergency guidance, <strong>ALWAYS consult official Indian government authorities</strong> (like NDMA, GSI) and qualified local geotechnical experts.</li>
|
573 |
+
</ul>
|
574 |
+
</div>
|
575 |
+
""", unsafe_allow_html=True)
|
576 |
+
|
577 |
+
col_map_input, col_ai_output = st.columns([0.45, 0.55]) # Adjusted column ratio
|
578 |
+
|
579 |
+
with col_map_input:
|
580 |
+
st.markdown('<div class="card">', unsafe_allow_html=True) # Wrap entire input column in a card
|
581 |
+
st.markdown('<div class="section-header"><h4>๐ Select Location & View Data</h4></div>', unsafe_allow_html=True)
|
582 |
+
|
583 |
+
st.markdown('<div class="search-container">', unsafe_allow_html=True)
|
584 |
+
search_location_input = st.text_input(
|
585 |
+
"Search for a location in India:",
|
586 |
+
key="search_loc_v4",
|
587 |
+
placeholder="e.g., Shimla, Munnar, Darjeeling..."
|
588 |
+
)
|
589 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
590 |
+
|
591 |
+
search_btn_col, reset_btn_col = st.columns([3,1])
|
592 |
+
with search_btn_col:
|
593 |
+
if st.button("๐ Search Location", key="search_btn_v4", use_container_width=True):
|
594 |
+
if search_location_input:
|
595 |
+
with st.spinner(f"Searching for '{search_location_input}'..."):
|
596 |
+
try:
|
597 |
+
loc = geolocator.geocode(search_location_input + ", India", timeout=10)
|
598 |
+
if loc:
|
599 |
+
st.session_state.selected_lat_lon = [loc.latitude, loc.longitude]
|
600 |
+
st.session_state.map_center_india = [loc.latitude, loc.longitude]
|
601 |
+
st.session_state.map_zoom_india = 11
|
602 |
+
st.session_state.location_name = loc.address
|
603 |
+
st.session_state.api_data_fetched = {}
|
604 |
+
st.session_state.exploration_output = {"kpi_data": {}, "detailed_text": {}}
|
605 |
+
st.session_state.is_fetching_data = True # Trigger data fetching
|
606 |
+
st.toast(f"๐บ๏ธ Location found: {loc.address.split(',')[0]}. Fetching data...", icon="โ
")
|
607 |
+
st.rerun()
|
608 |
+
else:
|
609 |
+
st.warning(f"โ Could not find '{search_location_input}'. Please try a different or more specific name.")
|
610 |
+
except Exception as e:
|
611 |
+
st.error(f"Geocoding error: {e}")
|
612 |
+
else:
|
613 |
+
st.info("Please enter a location name to search.")
|
614 |
+
with reset_btn_col:
|
615 |
+
if st.button("๐ Reset", key="reset_btn_v4", use_container_width=True, type="secondary"):
|
616 |
+
st.session_state.selected_lat_lon = None
|
617 |
+
st.session_state.map_center_india = [20.5937, 78.9629]
|
618 |
+
st.session_state.map_zoom_india = 4
|
619 |
+
st.session_state.location_name = ""
|
620 |
+
st.session_state.api_data_fetched = {}
|
621 |
+
st.session_state.exploration_output = {"kpi_data": {}, "detailed_text": {}}
|
622 |
+
st.session_state.is_fetching_data = False
|
623 |
+
st.toast("๐ Map & selection reset.", icon="๐บ๏ธ")
|
624 |
+
st.rerun()
|
625 |
+
|
626 |
+
|
627 |
+
st.markdown('<div class="map-container">', unsafe_allow_html=True)
|
628 |
+
st.markdown("<small><i>Click on the map to select a point, or use search above.</i></small>", unsafe_allow_html=True)
|
629 |
+
folium_map_display = folium.Map(
|
630 |
+
location=st.session_state.map_center_india,
|
631 |
+
zoom_start=st.session_state.map_zoom_india,
|
632 |
+
tiles="CartoDB positron",
|
633 |
+
key="folium_map_v4_instance" # Ensure unique key if map is complex
|
634 |
+
)
|
635 |
+
if st.session_state.selected_lat_lon:
|
636 |
+
folium.Marker(
|
637 |
+
st.session_state.selected_lat_lon,
|
638 |
+
popup=f"Selected: {st.session_state.location_name.split(',')[0]}" if st.session_state.location_name else "Selected Point",
|
639 |
+
tooltip="Current Selection",
|
640 |
+
icon=folium.Icon(color="red", icon="info-sign")
|
641 |
+
).add_to(folium_map_display)
|
642 |
+
|
643 |
+
map_interaction_data = st_folium(
|
644 |
+
folium_map_display,
|
645 |
+
width="100%",
|
646 |
+
height=330,
|
647 |
+
key="map_v4_interaction",
|
648 |
+
returned_objects=["last_clicked"]
|
649 |
+
)
|
650 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
651 |
+
|
652 |
+
if map_interaction_data and map_interaction_data.get("last_clicked"):
|
653 |
+
clicked_lat = map_interaction_data["last_clicked"]["lat"]
|
654 |
+
clicked_lon = map_interaction_data["last_clicked"]["lng"]
|
655 |
+
if st.session_state.selected_lat_lon is None or \
|
656 |
+
abs(st.session_state.selected_lat_lon[0] - clicked_lat) > 0.00001 or \
|
657 |
+
abs(st.session_state.selected_lat_lon[1] - clicked_lon) > 0.00001:
|
658 |
+
st.session_state.selected_lat_lon = [clicked_lat, clicked_lon]
|
659 |
+
st.session_state.location_name = reverse_geocode(clicked_lat, clicked_lon)
|
660 |
+
st.session_state.map_center_india = [clicked_lat, clicked_lon] # Recenter map
|
661 |
+
st.session_state.map_zoom_india = max(st.session_state.map_zoom_india, 11) # Zoom in
|
662 |
+
st.session_state.api_data_fetched = {}
|
663 |
+
st.session_state.exploration_output = {"kpi_data": {}, "detailed_text": {}}
|
664 |
+
st.session_state.is_fetching_data = True # Trigger data fetching
|
665 |
+
st.toast(f"๐ Pinned: {st.session_state.location_name.split(',')[0]}. Fetching data...", icon="๐บ๏ธ")
|
666 |
+
st.rerun()
|
667 |
+
|
668 |
+
explore_button_active = False
|
669 |
+
if st.session_state.selected_lat_lon:
|
670 |
+
st.success(f"**Selected Location:** {st.session_state.location_name}\n(Lat: {st.session_state.selected_lat_lon[0]:.4f}, Lon: {st.session_state.selected_lat_lon[1]:.4f})")
|
671 |
+
|
672 |
+
if st.session_state.is_fetching_data and not st.session_state.api_data_fetched: # Fetch data only if flag is true and not fetched
|
673 |
+
with st.spinner(f"โณ Fetching environmental data for {st.session_state.location_name.split(',')[0]}... This might take a few seconds."):
|
674 |
+
lat, lon = st.session_state.selected_lat_lon
|
675 |
+
api_data_temp = {}
|
676 |
+
api_data_temp['elevation_m'] = get_elevation(lat, lon)
|
677 |
+
api_data_temp['weather'] = fetch_rainfall_data(lat, lon)
|
678 |
+
api_data_temp['seismic'] = fetch_seismic_data(lat, lon)
|
679 |
+
st.session_state.api_data_fetched = api_data_temp
|
680 |
+
st.session_state.is_fetching_data = False # Reset flag
|
681 |
+
st.rerun() # Rerun to display fetched data
|
682 |
+
|
683 |
+
if st.session_state.api_data_fetched: # Display fetched data
|
684 |
+
st.markdown('<div class="data-card">', unsafe_allow_html=True)
|
685 |
+
st.markdown("##### ๐ฐ๏ธ Fetched Environmental Data:")
|
686 |
+
api_data = st.session_state.api_data_fetched
|
687 |
+
elev = api_data.get('elevation_m', 'N/A')
|
688 |
+
weather = api_data.get('weather', {})
|
689 |
+
curr_precip = weather.get('current_precipitation_mm', 'N/A')
|
690 |
+
seismic_events = api_data.get('seismic', [])
|
691 |
+
|
692 |
+
data_cols = st.columns(2)
|
693 |
+
with data_cols[0]:
|
694 |
+
st.metric(label="๐๏ธ Elevation", value=f"{elev} m" if elev != "N/A" else "N/A")
|
695 |
+
with data_cols[1]:
|
696 |
+
st.metric(label="๐ง Current Precip.", value=f"{curr_precip} mm" if curr_precip not in ["N/A", "Error"] else curr_precip)
|
697 |
+
|
698 |
+
with st.expander(f"๐ Seismic Activity (Last {SEISMIC_DAYS_AGO} days, M{SEISMIC_MIN_MAGNITUDE}+, ~{SEISMIC_RADIUS_KM}km radius)", expanded=len(seismic_events) > 0):
|
699 |
+
if seismic_events:
|
700 |
+
st.caption(f"Found {len(seismic_events)} significant earthquake(s) reported by USGS:")
|
701 |
+
for event in seismic_events[:5]:
|
702 |
+
st.markdown(f"- **M {event['magnitude']}** - {event['place']} ({event['time']}). Depth: {event['depth_km']} km. [More Info]({event.get('url', '#')})", unsafe_allow_html=True)
|
703 |
+
if len(seismic_events) > 5: st.caption(f"...and {len(seismic_events)-5} more.")
|
704 |
+
else:
|
705 |
+
st.caption("No significant recent seismic activity reported by USGS matching criteria.")
|
706 |
+
|
707 |
+
st.markdown("##### ๐ฆ๏ธ Rainfall Forecast (mm/day):")
|
708 |
+
forecast_df = weather.get('daily_forecast_df')
|
709 |
+
if forecast_df is not None and not forecast_df.empty:
|
710 |
+
st.markdown('<div class="data-viz">', unsafe_allow_html=True)
|
711 |
+
st.line_chart(forecast_df['Rainfall_Sum (mm)'], height=180)
|
712 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
713 |
+
cum_rain = forecast_df['Rainfall_Sum (mm)'].cumsum()
|
714 |
+
periods = [3, 7, min(FORECAST_DAYS, len(cum_rain))]
|
715 |
+
st.markdown("**Cumulative Rainfall Forecast:**")
|
716 |
+
cum_cols_display = st.columns(len(periods))
|
717 |
+
for i, p_days in enumerate(periods):
|
718 |
+
if 0 < p_days <= len(cum_rain):
|
719 |
+
val = cum_rain.iloc[p_days-1]
|
720 |
+
with cum_cols_display[i]:
|
721 |
+
st.metric(label=f"{p_days}-Day Total", value=f"{val:.1f}mm" if pd.notna(val) else "N/A")
|
722 |
+
else:
|
723 |
+
st.caption("Rainfall forecast data unavailable or encountered an error.")
|
724 |
+
st.markdown('</div>', unsafe_allow_html=True) # End data-card
|
725 |
+
|
726 |
+
if elev != "N/A" and curr_precip not in ["N/A", "Error"]: # Enable button if core data is present
|
727 |
+
explore_button_active = True
|
728 |
+
else: # No location selected
|
729 |
+
st.info("๐ Please select a location on the map or use the search bar to begin.")
|
730 |
+
|
731 |
+
if explore_button_active:
|
732 |
+
if st.button("๐ค Explore Potential Factors with AI", type="primary", use_container_width=True, key="explore_btn_v4"):
|
733 |
+
if st.session_state.selected_lat_lon and st.session_state.api_data_fetched:
|
734 |
+
with st.spinner("๐ก Gemini AI is analyzing... This may take a moment for a comprehensive exploration."):
|
735 |
+
raw_gemini_output = get_gemini_exploration_v4(
|
736 |
+
st.session_state.location_name,
|
737 |
+
st.session_state.selected_lat_lon,
|
738 |
+
st.session_state.api_data_fetched
|
739 |
+
)
|
740 |
+
if raw_gemini_output:
|
741 |
+
st.session_state.exploration_output = parse_gemini_output_v4(raw_gemini_output)
|
742 |
+
st.toast("โ
AI Exploration complete!", icon="๐ก")
|
743 |
+
else:
|
744 |
+
st.error("AI exploration failed. Please check API key or try again later.")
|
745 |
+
else:
|
746 |
+
st.warning("Please select a location and ensure data is fetched before exploring.")
|
747 |
+
elif st.session_state.selected_lat_lon and not st.session_state.api_data_fetched and not st.session_state.is_fetching_data:
|
748 |
+
st.warning("Data for the selected location is still fetching or incomplete. AI exploration is disabled until data is ready.")
|
749 |
+
|
750 |
+
st.markdown('</div>', unsafe_allow_html=True) # End of card for col_map_input
|
751 |
+
|
752 |
+
with col_ai_output:
|
753 |
+
st.markdown('<div class="card">', unsafe_allow_html=True) # Wrap entire AI output column in a card
|
754 |
+
st.markdown('<div class="section-header"><h4>๐ AI-Powered Exploration (Generalized)</h4></div>', unsafe_allow_html=True)
|
755 |
+
|
756 |
+
output_data = st.session_state.exploration_output
|
757 |
+
kpi_results = output_data.get("kpi_data", {})
|
758 |
+
detailed_results = output_data.get("detailed_text", {})
|
759 |
+
|
760 |
+
if kpi_results and any(val != "N/A" and val != "Not specified" and val for val in kpi_results.values()):
|
761 |
+
st.markdown("##### ๐ Key Indicators (AI Inferred for this Type of Area):")
|
762 |
+
st.markdown('<div class="kpi-grid">', unsafe_allow_html=True)
|
763 |
+
|
764 |
+
sus_level = kpi_results.get("GENERAL_SUSCEPTIBILITY_LEVEL", "N/A")
|
765 |
+
sus_delta_color = "normal"
|
766 |
+
if "low" in sus_level.lower(): sus_delta_color = "normal"
|
767 |
+
elif "moderate" in sus_level.lower(): sus_delta_color = "off"
|
768 |
+
elif "high" in sus_level.lower() or "very high" in sus_level.lower(): sus_delta_color = "inverse"
|
769 |
+
st.metric(label="๐๏ธ General Susceptibility", value=sus_level, delta_color=sus_delta_color, help="AI's assessment of general landslide susceptibility for this type of area in India, based on broad knowledge.")
|
770 |
+
|
771 |
+
rain_impact = kpi_results.get("RAINFALL_IMPACT_ASSESSMENT", "N/A")
|
772 |
+
rain_delta_color = "normal"
|
773 |
+
if "low" in rain_impact.lower(): rain_delta_color = "normal"
|
774 |
+
elif "moderate" in rain_impact.lower(): rain_delta_color = "off"
|
775 |
+
elif "significant" in rain_impact.lower() or "high" in rain_impact.lower(): rain_delta_color = "inverse"
|
776 |
+
st.metric(label="๐ง Rainfall Impact", value=rain_impact, delta_color=rain_delta_color, help="AI's assessment of rainfall's potential role, considering forecast and typical seasonal patterns for the area type.")
|
777 |
+
|
778 |
+
seismic_impact = kpi_results.get("SEISMIC_IMPACT_ASSESSMENT", "N/A")
|
779 |
+
seis_delta_color = "normal"
|
780 |
+
if "negligible" in seismic_impact.lower() or "low" in seismic_impact.lower(): seis_delta_color = "normal"
|
781 |
+
elif "moderate" in seismic_impact.lower(): seis_delta_color = "off"
|
782 |
+
elif "significant" in seismic_impact.lower(): seis_delta_color = "inverse"
|
783 |
+
st.metric(label="๐ Seismic Impact", value=seismic_impact, delta_color=seis_delta_color, help="AI's assessment of seismic activity's potential role as a trigger for this type of area.")
|
784 |
+
st.markdown('</div>', unsafe_allow_html=True) # End kpi-grid
|
785 |
+
st.markdown("---")
|
786 |
+
|
787 |
+
col_kpi_list1, col_kpi_list2 = st.columns(2)
|
788 |
+
with col_kpi_list1:
|
789 |
+
st.markdown("##### ๐๏ธ Top Landslide Types:")
|
790 |
+
top_types_str = kpi_results.get("TOP_HYPOTHETICAL_LANDSLIDE_TYPES", "Not specified by AI.")
|
791 |
+
top_types_list = [s.strip() for s in top_types_str.split(',') if s.strip()]
|
792 |
+
if top_types_list and top_types_list[0].lower() != "not specified":
|
793 |
+
for l_type in top_types_list: st.markdown(f"- {l_type}")
|
794 |
+
else: st.caption(top_types_str)
|
795 |
+
|
796 |
+
with col_kpi_list2:
|
797 |
+
st.markdown("##### ๐ณ Typical Land Cover (Inferred):")
|
798 |
+
land_cover = kpi_results.get("TYPICAL_LAND_COVER_INFERRED", "Not specified by AI.")
|
799 |
+
st.info(f"{land_cover}")
|
800 |
+
|
801 |
+
|
802 |
+
st.markdown("##### ๐ Key Contributing Factors:")
|
803 |
+
key_factors = kpi_results.get("KEY_CONTRIBUTING_FACTORS_POINTS", [])
|
804 |
+
if key_factors and isinstance(key_factors, list) and any(key_factors):
|
805 |
+
for factor in key_factors: st.markdown(f"- _{factor}_")
|
806 |
+
else: st.caption("Not specified or N/A by AI.")
|
807 |
+
|
808 |
+
st.markdown("---")
|
809 |
+
st.markdown("##### ๐ฌ Detailed AI Exploration Text:")
|
810 |
+
tab_titles = [key for key in detailed_results.keys() if detailed_results[key]]
|
811 |
+
if tab_titles:
|
812 |
+
tabs = st.tabs(tab_titles)
|
813 |
+
for i, title in enumerate(tab_titles):
|
814 |
+
with tabs[i]:
|
815 |
+
st.markdown(detailed_results[title], unsafe_allow_html=True) # Allow HTML for Gemini's formatting
|
816 |
+
else:
|
817 |
+
st.warning("AI exploration did not yield detailed textual content. The API might have had an issue or the prompt needs adjustment.")
|
818 |
+
if 'gemini_raw_output_debug' in st.session_state and st.session_state['gemini_raw_output_debug']:
|
819 |
+
with st.expander("Show Raw Gemini Output (for debugging)"):
|
820 |
+
st.text_area("Raw Output:", st.session_state['gemini_raw_output_debug'], height=200)
|
821 |
+
|
822 |
+
elif st.session_state.selected_lat_lon and explore_button_active:
|
823 |
+
st.info("๐ค Click the 'Explore Potential Factors with AI' button on the left panel after data for the selected location has been fetched. The AI's insights will appear here.")
|
824 |
+
elif not st.session_state.selected_lat_lon:
|
825 |
+
st.info("๐ Please select a location in the left panel first. AI exploration results will then be generated and displayed here.")
|
826 |
+
else:
|
827 |
+
st.info("AI exploration results will appear here once a location is selected, data is fetched, and the AI analysis is run.")
|
828 |
+
|
829 |
+
st.markdown("---")
|
830 |
+
st.markdown('<div class="section-header"><h4>๐ฎ๐ณ Official Indian Resources</h4></div>', unsafe_allow_html=True)
|
831 |
+
st.markdown("""
|
832 |
+
For accurate, official, and site-specific landslide information and warnings in India, please consult these primary resources:
|
833 |
+
- **National Disaster Management Authority (NDMA):** [ndma.gov.in](https://ndma.gov.in) - For national guidelines and disaster management.
|
834 |
+
- **Geological Survey of India (GSI):** [gsi.gov.in](https://www.gsi.gov.in/) - For geological data, landslide hazard zonation maps.
|
835 |
+
- **National Remote Sensing Centre (NRSC) Bhuvan Portal (ISRO):** [bhuvan.nrsc.gov.in](https://bhuvan.nrsc.gov.in/bhuvan_links.php) - For satellite imagery, thematic maps & disaster related services.
|
836 |
+
- **India Meteorological Department (IMD):** [mausam.imd.gov.in](https://mausam.imd.gov.in/) - For weather forecasts and warnings.
|
837 |
+
- **Your local State Disaster Management Authority (SDMA)** website (search for your state's SDMA).
|
838 |
+
""", unsafe_allow_html=True)
|
839 |
+
st.markdown('</div>', unsafe_allow_html=True) # End of card for col_ai_output
|
840 |
+
|
841 |
+
|
842 |
+
st.markdown("---")
|
843 |
+
st.markdown(
|
844 |
+
"""
|
845 |
+
<div class="footer">
|
846 |
+
<p><strong>Tool Version:</strong> Explorer 4.0 Enhanced UI</p>
|
847 |
+
<p>This is an <strong>educational tool</strong> for exploring POTENTIAL landslide factors based on generalized knowledge and limited public data.
|
848 |
+
It <strong>DOES NOT</strong> provide official warnings, site-specific risk assessments, or professional geotechnical advice.
|
849 |
+
Real-world landslide analysis requires extensive, detailed local data and expert assessment by qualified professionals.
|
850 |
+
Always refer to official government sources for safety and risk information.</p>
|
851 |
+
<p>Powered by <a href="https://streamlit.io" target="_blank">Streamlit</a> and <a href="https://ai.google.dev/" target="_blank">Google Gemini</a>.</p>
|
852 |
+
</div>
|
853 |
+
""", unsafe_allow_html=True
|
854 |
+
)
|