Spaces:
Running
Running
Update models/LSTM.py
Browse files- models/LSTM.py +87 -0
models/LSTM.py
CHANGED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
from models.preprocess_stage.preprocess_lstm import preprocess_lstm
|
6 |
+
|
7 |
+
EMBEDDING_DIM = 128
|
8 |
+
HIDDEN_SIZE = 16
|
9 |
+
MAX_LEN = 125
|
10 |
+
|
11 |
+
embedding_matrix = np.load('models/datasets/embedding_matrix.npy')
|
12 |
+
embedding_layer = nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))
|
13 |
+
|
14 |
+
|
15 |
+
class AtenttionTest(nn.Module):
|
16 |
+
def __init__(self, hidden_size=HIDDEN_SIZE):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
self.hidden_size = hidden_size
|
20 |
+
self.fc1 = nn.Linear(self.hidden_size, self.hidden_size)
|
21 |
+
self.fc2 = nn.Linear(self.hidden_size, self.hidden_size)
|
22 |
+
self.tahn = nn.Tanh()
|
23 |
+
self.fc3 = nn.Linear(self.hidden_size, 1)
|
24 |
+
|
25 |
+
def forward(self, outputs_lmst, h_n):
|
26 |
+
|
27 |
+
output_fc1 = self.fc1(outputs_lmst)
|
28 |
+
output_fc2 = self.fc2(h_n.squeeze(0))
|
29 |
+
|
30 |
+
fc1_fc2_cat = output_fc1 + output_fc2.unsqueeze(1)
|
31 |
+
|
32 |
+
output_tahn = self.tahn(fc1_fc2_cat)
|
33 |
+
|
34 |
+
attention_weights = torch.softmax(self.fc3(output_tahn).squeeze(2), dim=1)
|
35 |
+
|
36 |
+
output_finished = torch.bmm(output_fc1.transpose(1, 2), attention_weights.unsqueeze(2))
|
37 |
+
|
38 |
+
return output_finished, attention_weights
|
39 |
+
|
40 |
+
|
41 |
+
class LSTMnn(nn.Module):
|
42 |
+
|
43 |
+
def __init__(self):
|
44 |
+
super().__init__()
|
45 |
+
|
46 |
+
self.embedding = embedding_layer
|
47 |
+
self.lstm = nn.LSTM(
|
48 |
+
input_size=EMBEDDING_DIM,
|
49 |
+
hidden_size=HIDDEN_SIZE,
|
50 |
+
num_layers=1,
|
51 |
+
batch_first=True
|
52 |
+
)
|
53 |
+
self.attention = AtenttionTest(hidden_size=HIDDEN_SIZE)
|
54 |
+
self.fc_out = nn.Sequential(
|
55 |
+
nn.Linear(HIDDEN_SIZE, 128),
|
56 |
+
nn.Dropout(),
|
57 |
+
nn.Tanh(),
|
58 |
+
nn.Linear(128, 1)
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
|
63 |
+
embedding = self.embedding(x)
|
64 |
+
|
65 |
+
output_lstm, (h_n, _) = self.lstm(embedding)
|
66 |
+
|
67 |
+
output_attention, attention_weights = self.attention(output_lstm, h_n)
|
68 |
+
|
69 |
+
output_finished = self.fc_out(output_attention.squeeze(2))
|
70 |
+
|
71 |
+
return torch.sigmoid(output_finished), attention_weights
|
72 |
+
|
73 |
+
|
74 |
+
model = LSTMnn()
|
75 |
+
model.load_state_dict(torch.load('models/weights/LSTMBestWeights.pt'))
|
76 |
+
|
77 |
+
|
78 |
+
def predict_3(text):
|
79 |
+
|
80 |
+
preprocessed_text = preprocess_lstm(text, MAX_LEN=MAX_LEN)
|
81 |
+
|
82 |
+
model.eval()
|
83 |
+
predict, attention = model(torch.tensor(preprocessed_text).unsqueeze(0))
|
84 |
+
|
85 |
+
predict = round(predict.item())
|
86 |
+
|
87 |
+
return predict
|