Spaces:
Sleeping
Sleeping
Update models/BertTunning.py
Browse files- models/BertTunning.py +7 -11
models/BertTunning.py
CHANGED
@@ -1,17 +1,13 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
-
import torch.nn.functional as F
|
6 |
|
7 |
-
|
8 |
-
from
|
9 |
-
from preprocess_bert import preprocess_bert
|
10 |
|
11 |
MAX_LEN = 100
|
12 |
|
13 |
-
class BertTunnig(nn.Module):
|
14 |
|
|
|
15 |
def __init__(self, bert_model):
|
16 |
super().__init__()
|
17 |
|
@@ -37,9 +33,9 @@ class BertTunnig(nn.Module):
|
|
37 |
return torch.sigmoid(output)
|
38 |
|
39 |
|
40 |
-
model_tunning = BertTunnig(bert_model=
|
|
|
41 |
|
42 |
-
model_tunning.load_state_dict(torch.load('best_weights_berttinnug(2).pt'))
|
43 |
|
44 |
def predict_2(text):
|
45 |
|
@@ -48,6 +44,6 @@ def predict_2(text):
|
|
48 |
|
49 |
with torch.inference_mode():
|
50 |
|
51 |
-
predict = model_tunning(preprocessed_text, attention_mask=attention_mask).item()
|
52 |
|
53 |
-
return
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
|
|
3 |
|
4 |
+
from models.preprocess_stage.bert_model import model
|
5 |
+
from models.preprocess_stage.bert_model import preprocess_bert
|
|
|
6 |
|
7 |
MAX_LEN = 100
|
8 |
|
|
|
9 |
|
10 |
+
class BertTunnig(nn.Module):
|
11 |
def __init__(self, bert_model):
|
12 |
super().__init__()
|
13 |
|
|
|
33 |
return torch.sigmoid(output)
|
34 |
|
35 |
|
36 |
+
model_tunning = BertTunnig(bert_model=model)
|
37 |
+
model_tunning.load_state_dict(torch.load('models/weights/BertTunnigWeights.pt'))
|
38 |
|
|
|
39 |
|
40 |
def predict_2(text):
|
41 |
|
|
|
44 |
|
45 |
with torch.inference_mode():
|
46 |
|
47 |
+
predict = round(model_tunning(preprocessed_text, attention_mask=attention_mask).item())
|
48 |
|
49 |
+
return predict
|