Create network.js
Browse files- network.js +87 -0
network.js
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class NeuralNetwork{
|
2 |
+
constructor(neuronCounts){
|
3 |
+
this.levels=[];
|
4 |
+
for(let i=0;i<neuronCounts.length-1;i++){
|
5 |
+
this.levels.push(new Level(
|
6 |
+
neuronCounts[i],neuronCounts[i+1]
|
7 |
+
));
|
8 |
+
}
|
9 |
+
}
|
10 |
+
|
11 |
+
static feedForward(givenInputs,network){
|
12 |
+
let outputs=Level.feedForward(
|
13 |
+
givenInputs,network.levels[0]);
|
14 |
+
for(let i=1;i<network.levels.length;i++){
|
15 |
+
outputs=Level.feedForward(
|
16 |
+
outputs,network.levels[i]);
|
17 |
+
}
|
18 |
+
return outputs;
|
19 |
+
}
|
20 |
+
|
21 |
+
static mutate(network,amount=1){
|
22 |
+
network.levels.forEach(level => {
|
23 |
+
for(let i=0;i<level.biases.length;i++){
|
24 |
+
level.biases[i]=lerp(
|
25 |
+
level.biases[i],
|
26 |
+
Math.random()*2-1,
|
27 |
+
amount
|
28 |
+
)
|
29 |
+
}
|
30 |
+
for(let i=0;i<level.weights.length;i++){
|
31 |
+
for(let j=0;j<level.weights[i].length;j++){
|
32 |
+
level.weights[i][j]=lerp(
|
33 |
+
level.weights[i][j],
|
34 |
+
Math.random()*2-1,
|
35 |
+
amount
|
36 |
+
)
|
37 |
+
}
|
38 |
+
}
|
39 |
+
});
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
class Level{
|
44 |
+
constructor(inputCount,outputCount){
|
45 |
+
this.inputs=new Array(inputCount);
|
46 |
+
this.outputs=new Array(outputCount);
|
47 |
+
this.biases=new Array(outputCount);
|
48 |
+
|
49 |
+
this.weights=[];
|
50 |
+
for(let i=0;i<inputCount;i++){
|
51 |
+
this.weights[i]=new Array(outputCount);
|
52 |
+
}
|
53 |
+
|
54 |
+
Level.#randomize(this);
|
55 |
+
}
|
56 |
+
|
57 |
+
static #randomize(level){
|
58 |
+
for(let i=0;i<level.inputs.length;i++){
|
59 |
+
for(let j=0;j<level.outputs.length;j++){
|
60 |
+
level.weights[i][j]=Math.random()*2-1;
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
for(let i=0;i<level.biases.length;i++){
|
65 |
+
level.biases[i]=Math.random()*2-1;
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
static feedForward(givenInputs,level){
|
70 |
+
level.inputs=[...givenInputs];
|
71 |
+
|
72 |
+
for(let i=0;i<level.outputs.length;i++){
|
73 |
+
let sum=0
|
74 |
+
for(let j=0;j<level.inputs.length;j++){
|
75 |
+
sum+=level.inputs[j]*level.weights[j][i];
|
76 |
+
}
|
77 |
+
|
78 |
+
if(sum>level.biases[i]){
|
79 |
+
level.outputs[i]=1;
|
80 |
+
}else{
|
81 |
+
level.outputs[i]=0;
|
82 |
+
}
|
83 |
+
}
|
84 |
+
|
85 |
+
return level.outputs;
|
86 |
+
}
|
87 |
+
}
|