File size: 4,017 Bytes
9a80b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4559b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import torch
import os
import requests
import json
import cv2
from PIL import Image
from timeit import default_timer as timer
import pathlib
import platform
import numpy as np
model = torch.hub.load('ultralytics/yolov5','yolov5s', pretrained=True)
cnt = 0

def LCR(bbox,x_img, y_img):
    x1 = bbox[0]/x_img
    x2 = bbox[2]/x_img
    
    
    if x1 < 0.2 and x2 < 0.2 :
        location = "Left"
    elif x1 > 0.8 and x2 > 0.8:
        location = "Right"
    elif x1 < 0.2 and (x2 <= 0.8 and x2 >= 0.2):
        if (x1 + x2) < 0.4:
            location = "Left"
        else:
            location = "Center" 
    elif x2 > 0.8 and (x1 <= 0.8 and x1 >= 0.2):
        if (x1 + x2) > 1.6:
            location = "Right"
        else:
            location = "Center" 
    else:
        location = "Center"
    print(f"x1 {x1} x2 {x2} bbox0 {bbox[0]} bbox2 {bbox[2]} x_img {x_img} LocationLCR {location}")
    return location

def ACB(bbox, x_img, y_img, location):
    y1 = bbox[1]/y_img
    y2 = bbox[3]/y_img
    if location == "Center":
        if y1 < 0.33333 and y2 < 0.33333 :
            location = "Above"
        elif y1 > 0.66667 and y2 > 0.66667:
            location = "Below"
        elif y1 < 0.33333 and (y2 <= 0.66667 and y2 >= 0.33333):
            if (y1 + y2) < 0.66667:
                location = "Above"
            else:
                location = "Center" 
        elif y2 > 0.66667 and (y1 <= 0.66667 and y1 >= 0.33333):
            if (y1 + y2) > 1.33333:
                location = "Below"
            else:
                location = "Center" 
        else:
            location = "Center"
    else:
        pass
    print(f"y1 {y1} y2 {y2} bbox1 {bbox[1]} bbox3 {bbox[3]} y_img {y_img} Location{location}")
    
    return location
    #print(bbox[0])
    
def turn_img_into_fileJSON(frame):
    start_time = timer()
    x_img, y_img = frame.size
    print(x_img,y_img)
    global cnt
    objects = []

    prediction = model(frame)
    for det in prediction.xyxy[0]:
        class_id = int(det[5])
        class_name = model.names[class_id]
        confidence = float(det[4])
        bbox = det[:4].tolist()
        if(confidence >= 0.5):
            location = LCR(bbox, x_img, y_img)
            location = ACB(bbox, x_img, y_img, location)
            # Save the results to the list
            objects.append({
                'Class': class_name,
                #'BoundingBox': bbox,
                'Location': location,
                'Confidence': confidence
            })
        with open('{:05d}.json'.format(cnt)  , 'w') as f:
            json.dump(objects, f)
    cnt += 1
    pred_time = round(timer() - start_time, 5)
    json_str = json.dumps(objects)
    return json_str, pred_time
#path = [["D:/cuoc_thi/object-detection/download.jpg"],["C:/Users/ACER/Pictures/mydestiny/273536337_788402492117531_8798195010554693138_n.jpg"]]
title = "Object-detection"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of object."
article = "Created by Ryan"

# json_str1, pred_time1 = turn_img_into_fileJSON("C:/Users/ACER/Pictures/mydestiny/273536337_788402492117531_8798195010554693138_n.jpg")
# print(json_str1, pred_time1)

# json_str, pred_time = turn_img_into_fileJSON("D:/cuoc_thi/object-detection/download.jpg")
# print(json_str, pred_time)


# Create the Gradio demo
demo = gr.Interface(fn=turn_img_into_fileJSON, # mapping function from input to output
                    inputs="pil", # what are the inputs?
                    outputs=[gr.JSON(label="JSON Output"),
                             #gr.Label(num_top_classes=80, label="Predictions"),
                             gr.Number(label="Prediction time (s)")],
                             #gr.outputs.Label(num_top_classes= 80),
                    #examples=path, 
                    title=title,
                    description=description,
                    article=article,
                    live = True)
#demo.launch()
demo.launch(share=True)