RyanPham19092002 commited on
Commit
46ea023
·
1 Parent(s): b4559b2

Add application file

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -6,17 +6,15 @@ import json
6
  import cv2
7
  from PIL import Image
8
  from timeit import default_timer as timer
9
- import pathlib
10
- import platform
11
  import numpy as np
 
 
12
  model = torch.hub.load('ultralytics/yolov5','yolov5s', pretrained=True)
 
13
  cnt = 0
14
-
15
  def LCR(bbox,x_img, y_img):
16
  x1 = bbox[0]/x_img
17
  x2 = bbox[2]/x_img
18
-
19
-
20
  if x1 < 0.2 and x2 < 0.2 :
21
  location = "Left"
22
  elif x1 > 0.8 and x2 > 0.8:
@@ -96,14 +94,6 @@ def turn_img_into_fileJSON(frame):
96
  title = "Object-detection"
97
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of object."
98
  article = "Created by Ryan"
99
-
100
- # json_str1, pred_time1 = turn_img_into_fileJSON("C:/Users/ACER/Pictures/mydestiny/273536337_788402492117531_8798195010554693138_n.jpg")
101
- # print(json_str1, pred_time1)
102
-
103
- # json_str, pred_time = turn_img_into_fileJSON("D:/cuoc_thi/object-detection/download.jpg")
104
- # print(json_str, pred_time)
105
-
106
-
107
  # Create the Gradio demo
108
  demo = gr.Interface(fn=turn_img_into_fileJSON, # mapping function from input to output
109
  inputs="pil", # what are the inputs?
@@ -116,5 +106,5 @@ demo = gr.Interface(fn=turn_img_into_fileJSON, # mapping function from input to
116
  description=description,
117
  article=article,
118
  live = True)
119
- #demo.launch()
120
- demo.launch(share=True)
 
6
  import cv2
7
  from PIL import Image
8
  from timeit import default_timer as timer
 
 
9
  import numpy as np
10
+ from transformers import AutoModel
11
+
12
  model = torch.hub.load('ultralytics/yolov5','yolov5s', pretrained=True)
13
+ #model1 = AutoModel.from_pretrained(model)
14
  cnt = 0
 
15
  def LCR(bbox,x_img, y_img):
16
  x1 = bbox[0]/x_img
17
  x2 = bbox[2]/x_img
 
 
18
  if x1 < 0.2 and x2 < 0.2 :
19
  location = "Left"
20
  elif x1 > 0.8 and x2 > 0.8:
 
94
  title = "Object-detection"
95
  description = "An EfficientNetB2 feature extractor computer vision model to classify images of object."
96
  article = "Created by Ryan"
 
 
 
 
 
 
 
 
97
  # Create the Gradio demo
98
  demo = gr.Interface(fn=turn_img_into_fileJSON, # mapping function from input to output
99
  inputs="pil", # what are the inputs?
 
106
  description=description,
107
  article=article,
108
  live = True)
109
+ demo.launch()
110
+ #demo.launch(share=True)