Spaces:
Sleeping
Sleeping
# pylint: disable=R0801 | |
# pylint: disable=W0613 | |
# pylint: disable=W0221 | |
""" | |
temporal_transformers.py | |
This module provides classes and functions for implementing Temporal Transformers | |
in PyTorch, designed for handling video data and temporal sequences within transformer-based models. | |
Functions: | |
zero_module(module) | |
Zero out the parameters of a module and return it. | |
Classes: | |
TemporalTransformer3DModelOutput(BaseOutput) | |
Dataclass for storing the output of TemporalTransformer3DModel. | |
VanillaTemporalModule(nn.Module) | |
A Vanilla Temporal Module class for handling temporal data. | |
TemporalTransformer3DModel(nn.Module) | |
A Temporal Transformer 3D Model class for transforming temporal data. | |
TemporalTransformerBlock(nn.Module) | |
A Temporal Transformer Block class for building the transformer architecture. | |
PositionalEncoding(nn.Module) | |
A Positional Encoding module for transformers to encode positional information. | |
Dependencies: | |
math | |
dataclasses.dataclass | |
typing (Callable, Optional) | |
torch | |
diffusers (FeedForward, Attention, AttnProcessor) | |
diffusers.utils (BaseOutput) | |
diffusers.utils.import_utils (is_xformers_available) | |
einops (rearrange, repeat) | |
torch.nn | |
xformers | |
xformers.ops | |
Example Usage: | |
>>> motion_module = get_motion_module(in_channels=512, motion_module_type="Vanilla", motion_module_kwargs={}) | |
>>> output = motion_module(input_tensor, temb, encoder_hidden_states) | |
This module is designed to facilitate the creation, training, and inference of transformer models | |
that operate on temporal data, such as videos or time-series. It includes mechanisms for applying temporal attention, | |
managing positional encoding, and integrating with external libraries for efficient attention operations. | |
""" | |
# This code is copied from https://github.com/guoyww/AnimateDiff. | |
import math | |
import torch | |
import xformers | |
import xformers.ops | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import Attention, AttnProcessor | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange, repeat | |
from torch import nn | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
Args: | |
- module: A PyTorch module to zero out its parameters. | |
Returns: | |
A zeroed out PyTorch module. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class TemporalTransformer3DModelOutput(BaseOutput): | |
""" | |
Output class for the TemporalTransformer3DModel. | |
Attributes: | |
sample (torch.FloatTensor): The output sample tensor from the model. | |
""" | |
sample: torch.FloatTensor | |
def get_sample_shape(self): | |
""" | |
Returns the shape of the sample tensor. | |
Returns: | |
Tuple: The shape of the sample tensor. | |
""" | |
return self.sample.shape | |
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): | |
""" | |
This function returns a motion module based on the given type and parameters. | |
Args: | |
- in_channels (int): The number of input channels for the motion module. | |
- motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported. | |
- motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor. | |
Returns: | |
VanillaTemporalModule: The created motion module. | |
Raises: | |
ValueError: If an unsupported motion_module_type is provided. | |
""" | |
if motion_module_type == "Vanilla": | |
return VanillaTemporalModule( | |
in_channels=in_channels, | |
**motion_module_kwargs, | |
) | |
raise ValueError | |
class VanillaTemporalModule(nn.Module): | |
""" | |
A Vanilla Temporal Module class. | |
Args: | |
- in_channels (int): The number of input channels for the motion module. | |
- num_attention_heads (int): Number of attention heads. | |
- num_transformer_block (int): Number of transformer blocks. | |
- attention_block_types (tuple): Types of attention blocks. | |
- cross_frame_attention_mode: Mode for cross-frame attention. | |
- temporal_position_encoding (bool): Flag for temporal position encoding. | |
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. | |
- temporal_attention_dim_div (int): Divisor for temporal attention dimension. | |
- zero_initialize (bool): Flag for zero initialization. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads=8, | |
num_transformer_block=2, | |
attention_block_types=("Temporal_Self", "Temporal_Self"), | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
temporal_attention_dim_div=1, | |
zero_initialize=True, | |
): | |
super().__init__() | |
self.temporal_transformer = TemporalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels | |
// num_attention_heads | |
// temporal_attention_dim_div, | |
num_layers=num_transformer_block, | |
attention_block_types=attention_block_types, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
if zero_initialize: | |
self.temporal_transformer.proj_out = zero_module( | |
self.temporal_transformer.proj_out | |
) | |
def forward( | |
self, | |
input_tensor, | |
encoder_hidden_states, | |
attention_mask=None, | |
): | |
""" | |
Forward pass of the TemporalTransformer3DModel. | |
Args: | |
hidden_states (torch.Tensor): The hidden states of the model. | |
encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder. | |
attention_mask (torch.Tensor, optional): The attention mask. | |
Returns: | |
torch.Tensor: The output tensor after the forward pass. | |
""" | |
hidden_states = input_tensor | |
hidden_states = self.temporal_transformer( | |
hidden_states, encoder_hidden_states | |
) | |
output = hidden_states | |
return output | |
class TemporalTransformer3DModel(nn.Module): | |
""" | |
A Temporal Transformer 3D Model class. | |
Args: | |
- in_channels (int): The number of input channels. | |
- num_attention_heads (int): Number of attention heads. | |
- attention_head_dim (int): Dimension of attention heads. | |
- num_layers (int): Number of transformer layers. | |
- attention_block_types (tuple): Types of attention blocks. | |
- dropout (float): Dropout rate. | |
- norm_num_groups (int): Number of groups for normalization. | |
- cross_attention_dim (int): Dimension for cross-attention. | |
- activation_fn (str): Activation function. | |
- attention_bias (bool): Flag for attention bias. | |
- upcast_attention (bool): Flag for upcast attention. | |
- cross_frame_attention_mode: Mode for cross-frame attention. | |
- temporal_position_encoding (bool): Flag for temporal position encoding. | |
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
num_layers, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
attention_block_types=attention_block_types, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward(self, hidden_states, encoder_hidden_states=None): | |
""" | |
Forward pass for the TemporalTransformer3DModel. | |
Args: | |
hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels). | |
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels). | |
Returns: | |
torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels). | |
""" | |
assert ( | |
hidden_states.dim() == 5 | |
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
batch, _, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
batch, height * weight, inner_dim | |
) | |
hidden_states = self.proj_in(hidden_states) | |
# Transformer Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
video_length=video_length, | |
) | |
# output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
) | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
return output | |
class TemporalTransformerBlock(nn.Module): | |
""" | |
A Temporal Transformer Block class. | |
Args: | |
- dim (int): Dimension of the block. | |
- num_attention_heads (int): Number of attention heads. | |
- attention_head_dim (int): Dimension of attention heads. | |
- attention_block_types (tuple): Types of attention blocks. | |
- dropout (float): Dropout rate. | |
- cross_attention_dim (int): Dimension for cross-attention. | |
- activation_fn (str): Activation function. | |
- attention_bias (bool): Flag for attention bias. | |
- upcast_attention (bool): Flag for upcast attention. | |
- cross_frame_attention_mode: Mode for cross-frame attention. | |
- temporal_position_encoding (bool): Flag for temporal position encoding. | |
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. | |
""" | |
def __init__( | |
self, | |
dim, | |
num_attention_heads, | |
attention_head_dim, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
): | |
super().__init__() | |
attention_blocks = [] | |
norms = [] | |
for block_name in attention_block_types: | |
attention_blocks.append( | |
VersatileAttention( | |
attention_mode=block_name.split("_", maxsplit=1)[0], | |
cross_attention_dim=cross_attention_dim | |
if block_name.endswith("_Cross") | |
else None, | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
) | |
norms.append(nn.LayerNorm(dim)) | |
self.attention_blocks = nn.ModuleList(attention_blocks) | |
self.norms = nn.ModuleList(norms) | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
self.ff_norm = nn.LayerNorm(dim) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
video_length=None, | |
): | |
""" | |
Forward pass for the TemporalTransformerBlock. | |
Args: | |
hidden_states (torch.Tensor): The input hidden states with shape | |
(batch_size, video_length, in_channels). | |
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states | |
with shape (batch_size, encoder_length, in_channels). | |
video_length (int, optional): The length of the video. | |
Returns: | |
torch.Tensor: The output hidden states with shape | |
(batch_size, video_length, in_channels). | |
""" | |
for attention_block, norm in zip(self.attention_blocks, self.norms): | |
norm_hidden_states = norm(hidden_states) | |
hidden_states = ( | |
attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states | |
if attention_block.is_cross_attention | |
else None, | |
video_length=video_length, | |
) | |
+ hidden_states | |
) | |
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
output = hidden_states | |
return output | |
class PositionalEncoding(nn.Module): | |
""" | |
Positional Encoding module for transformers. | |
Args: | |
- d_model (int): Model dimension. | |
- dropout (float): Dropout rate. | |
- max_len (int): Maximum length for positional encoding. | |
""" | |
def __init__(self, d_model, dropout=0.0, max_len=24): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x): | |
""" | |
Forward pass of the PositionalEncoding module. | |
This method takes an input tensor `x` and adds the positional encoding to it. The positional encoding is | |
generated based on the input tensor's shape and is added to the input tensor element-wise. | |
Args: | |
x (torch.Tensor): The input tensor to be positionally encoded. | |
Returns: | |
torch.Tensor: The positionally encoded tensor. | |
""" | |
x = x + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class VersatileAttention(Attention): | |
""" | |
Versatile Attention class. | |
Args: | |
- attention_mode: Attention mode. | |
- temporal_position_encoding (bool): Flag for temporal position encoding. | |
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding. | |
""" | |
def __init__( | |
self, | |
*args, | |
attention_mode=None, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
assert attention_mode == "Temporal" | |
self.attention_mode = attention_mode | |
self.is_cross_attention = kwargs.get("cross_attention_dim") is not None | |
self.pos_encoder = ( | |
PositionalEncoding( | |
kwargs["query_dim"], | |
dropout=0.0, | |
max_len=temporal_position_encoding_max_len, | |
) | |
if (temporal_position_encoding and attention_mode == "Temporal") | |
else None | |
) | |
def extra_repr(self): | |
""" | |
Returns a string representation of the module with information about the attention mode and whether it is cross-attention. | |
Returns: | |
str: A string representation of the module. | |
""" | |
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
def set_use_memory_efficient_attention_xformers( | |
self, | |
use_memory_efficient_attention_xformers: bool, | |
): | |
""" | |
Sets the use of memory-efficient attention xformers for the VersatileAttention class. | |
Args: | |
use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not. | |
Returns: | |
None | |
""" | |
if use_memory_efficient_attention_xformers: | |
if not is_xformers_available(): | |
raise ModuleNotFoundError( | |
( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers" | |
), | |
name="xformers", | |
) | |
if not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
" only available for GPU " | |
) | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
processor = AttnProcessor() | |
else: | |
processor = AttnProcessor() | |
self.set_processor(processor) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
video_length=None, | |
**cross_attention_kwargs, | |
): | |
""" | |
Args: | |
hidden_states (`torch.Tensor`): | |
The hidden states to be passed through the model. | |
encoder_hidden_states (`torch.Tensor`, optional): | |
The encoder hidden states to be passed through the model. | |
attention_mask (`torch.Tensor`, optional): | |
The attention mask to be used in the model. | |
video_length (`int`, optional): | |
The length of the video. | |
cross_attention_kwargs (`dict`, optional): | |
Additional keyword arguments to be used for cross-attention. | |
Returns: | |
`torch.Tensor`: | |
The output tensor after passing through the model. | |
""" | |
if self.attention_mode == "Temporal": | |
d = hidden_states.shape[1] # d means HxW | |
hidden_states = rearrange( | |
hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
) | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states) | |
encoder_hidden_states = ( | |
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) | |
if encoder_hidden_states is not None | |
else encoder_hidden_states | |
) | |
else: | |
raise NotImplementedError | |
hidden_states = self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.attention_mode == "Temporal": | |
hidden_states = rearrange( | |
hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |