Spaces:
Sleeping
Sleeping
# pylint: disable=E1120 | |
# pylint: disable=E1102 | |
# pylint: disable=W0237 | |
# src/models/resnet.py | |
""" | |
This module defines various components used in the ResNet model, such as InflatedConv3D, InflatedGroupNorm, | |
Upsample3D, Downsample3D, ResnetBlock3D, and Mish activation function. These components are used to construct | |
a deep neural network model for image classification or other computer vision tasks. | |
Classes: | |
- InflatedConv3d: An inflated 3D convolutional layer, inheriting from nn.Conv2d. | |
- InflatedGroupNorm: An inflated group normalization layer, inheriting from nn.GroupNorm. | |
- Upsample3D: A 3D upsampling module, used to increase the resolution of the input tensor. | |
- Downsample3D: A 3D downsampling module, used to decrease the resolution of the input tensor. | |
- ResnetBlock3D: A 3D residual block, commonly used in ResNet architectures. | |
- Mish: A Mish activation function, which is a smooth, non-monotonic activation function. | |
To use this module, simply import the classes and functions you need and follow the instructions provided in | |
the respective class and function docstrings. | |
""" | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch import nn | |
class InflatedConv3d(nn.Conv2d): | |
""" | |
InflatedConv3d is a class that inherits from torch.nn.Conv2d and overrides the forward method. | |
This class is used to perform 3D convolution on input tensor x. It is a specialized type of convolutional layer | |
commonly used in deep learning models for computer vision tasks. The main difference between a regular Conv2d and | |
InflatedConv3d is that InflatedConv3d is designed to handle 3D input tensors, which are typically the result of | |
inflating 2D convolutional layers to 3D for use in 3D deep learning tasks. | |
Attributes: | |
Same as torch.nn.Conv2d. | |
Methods: | |
forward(self, x): | |
Performs 3D convolution on the input tensor x using the InflatedConv3d layer. | |
Example: | |
conv_layer = InflatedConv3d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1) | |
output = conv_layer(input_tensor) | |
""" | |
def forward(self, x): | |
""" | |
Forward pass of the InflatedConv3d layer. | |
Args: | |
x (torch.Tensor): Input tensor to the layer. | |
Returns: | |
torch.Tensor: Output tensor after applying the InflatedConv3d layer. | |
""" | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class InflatedGroupNorm(nn.GroupNorm): | |
""" | |
InflatedGroupNorm is a custom class that inherits from torch.nn.GroupNorm. | |
It is used to apply group normalization to 3D tensors. | |
Args: | |
num_groups (int): The number of groups to divide the channels into. | |
num_channels (int): The number of channels in the input tensor. | |
eps (float, optional): A small constant to add to the variance to avoid division by zero. Defaults to 1e-5. | |
affine (bool, optional): If True, the module has learnable affine parameters. Defaults to True. | |
Attributes: | |
weight (torch.Tensor): The learnable weight tensor for scale. | |
bias (torch.Tensor): The learnable bias tensor for shift. | |
Forward method: | |
x (torch.Tensor): Input tensor to be normalized. | |
return (torch.Tensor): Normalized tensor. | |
""" | |
def forward(self, x): | |
""" | |
Performs a forward pass through the CustomClassName. | |
:param x: Input tensor of shape (batch_size, channels, video_length, height, width). | |
:return: Output tensor of shape (batch_size, channels, video_length, height, width). | |
""" | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class Upsample3D(nn.Module): | |
""" | |
Upsample3D is a PyTorch module that upsamples a 3D tensor. | |
Args: | |
channels (int): The number of channels in the input tensor. | |
use_conv (bool): Whether to use a convolutional layer for upsampling. | |
use_conv_transpose (bool): Whether to use a transposed convolutional layer for upsampling. | |
out_channels (int): The number of channels in the output tensor. | |
name (str): The name of the convolutional layer. | |
""" | |
def __init__( | |
self, | |
channels, | |
use_conv=False, | |
use_conv_transpose=False, | |
out_channels=None, | |
name="conv", | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
if use_conv_transpose: | |
raise NotImplementedError | |
if use_conv: | |
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) | |
def forward(self, hidden_states, output_size=None): | |
""" | |
Forward pass of the Upsample3D class. | |
Args: | |
hidden_states (torch.Tensor): Input tensor to be upsampled. | |
output_size (tuple, optional): Desired output size of the upsampled tensor. | |
Returns: | |
torch.Tensor: Upsampled tensor. | |
Raises: | |
AssertionError: If the number of channels in the input tensor does not match the expected channels. | |
""" | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
raise NotImplementedError | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate( | |
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest" | |
) | |
else: | |
hidden_states = F.interpolate( | |
hidden_states, size=output_size, mode="nearest" | |
) | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# if self.use_conv: | |
# if self.name == "conv": | |
# hidden_states = self.conv(hidden_states) | |
# else: | |
# hidden_states = self.Conv2d_0(hidden_states) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class Downsample3D(nn.Module): | |
""" | |
The Downsample3D class is a PyTorch module for downsampling a 3D tensor, which is used to | |
reduce the spatial resolution of feature maps, commonly in the encoder part of a neural network. | |
Attributes: | |
channels (int): Number of input channels. | |
use_conv (bool): Flag to use a convolutional layer for downsampling. | |
out_channels (int, optional): Number of output channels. Defaults to input channels if None. | |
padding (int): Padding added to the input. | |
name (str): Name of the convolutional layer used for downsampling. | |
Methods: | |
forward(self, hidden_states): | |
Downsamples the input tensor hidden_states and returns the downsampled tensor. | |
""" | |
def __init__( | |
self, channels, use_conv=False, out_channels=None, padding=1, name="conv" | |
): | |
""" | |
Downsamples the given input in the 3D space. | |
Args: | |
channels: The number of input channels. | |
use_conv: Whether to use a convolutional layer for downsampling. | |
out_channels: The number of output channels. If None, the input channels are used. | |
padding: The amount of padding to be added to the input. | |
name: The name of the convolutional layer. | |
""" | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
self.conv = InflatedConv3d( | |
self.channels, self.out_channels, 3, stride=stride, padding=padding | |
) | |
else: | |
raise NotImplementedError | |
def forward(self, hidden_states): | |
""" | |
Forward pass for the Downsample3D class. | |
Args: | |
hidden_states (torch.Tensor): Input tensor to be downsampled. | |
Returns: | |
torch.Tensor: Downsampled tensor. | |
Raises: | |
AssertionError: If the number of channels in the input tensor does not match the expected channels. | |
""" | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
raise NotImplementedError | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
""" | |
The ResnetBlock3D class defines a 3D residual block, a common building block in ResNet | |
architectures for both image and video modeling tasks. | |
Attributes: | |
in_channels (int): Number of input channels. | |
out_channels (int, optional): Number of output channels, defaults to in_channels if None. | |
conv_shortcut (bool): Flag to use a convolutional shortcut. | |
dropout (float): Dropout rate. | |
temb_channels (int): Number of channels in the time embedding tensor. | |
groups (int): Number of groups for the group normalization layers. | |
eps (float): Epsilon value for group normalization. | |
non_linearity (str): Type of nonlinearity to apply after convolutions. | |
time_embedding_norm (str): Type of normalization for the time embedding. | |
output_scale_factor (float): Scaling factor for the output tensor. | |
use_in_shortcut (bool): Flag to include the input tensor in the shortcut connection. | |
use_inflated_groupnorm (bool): Flag to use inflated group normalization layers. | |
Methods: | |
forward(self, input_tensor, temb): | |
Passes the input tensor and time embedding through the residual block and | |
returns the output tensor. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
use_inflated_groupnorm=None, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
assert use_inflated_groupnorm is not None | |
if use_inflated_groupnorm: | |
self.norm1 = InflatedGroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
) | |
else: | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
) | |
self.conv1 = InflatedConv3d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
time_emb_proj_out_channels = out_channels | |
elif self.time_embedding_norm == "scale_shift": | |
time_emb_proj_out_channels = out_channels * 2 | |
else: | |
raise ValueError( | |
f"unknown time_embedding_norm : {self.time_embedding_norm} " | |
) | |
self.time_emb_proj = torch.nn.Linear( | |
temb_channels, time_emb_proj_out_channels | |
) | |
else: | |
self.time_emb_proj = None | |
if use_inflated_groupnorm: | |
self.norm2 = InflatedGroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True | |
) | |
else: | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True | |
) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = InflatedConv3d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if non_linearity == "swish": | |
self.nonlinearity = F.silu() | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.use_in_shortcut = ( | |
self.in_channels != self.out_channels | |
if use_in_shortcut is None | |
else use_in_shortcut | |
) | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = InflatedConv3d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, input_tensor, temb): | |
""" | |
Forward pass for the ResnetBlock3D class. | |
Args: | |
input_tensor (torch.Tensor): Input tensor to the ResnetBlock3D layer. | |
temb (torch.Tensor): Token embedding tensor. | |
Returns: | |
torch.Tensor: Output tensor after passing through the ResnetBlock3D layer. | |
""" | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class Mish(torch.nn.Module): | |
""" | |
The Mish class implements the Mish activation function, a smooth, non-monotonic function | |
that can be used in neural networks as an alternative to traditional activation functions like ReLU. | |
Methods: | |
forward(self, hidden_states): | |
Applies the Mish activation function to the input tensor hidden_states and | |
returns the resulting tensor. | |
""" | |
def forward(self, hidden_states): | |
""" | |
Mish activation function. | |
Args: | |
hidden_states (torch.Tensor): The input tensor to apply the Mish activation function to. | |
Returns: | |
hidden_states (torch.Tensor): The output tensor after applying the Mish activation function. | |
""" | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |