Ryukijano's picture
change
dece73c
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import gradio as gr
import os
# import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">LLaMA-Mesh</h1>
<div>
<a style="display:inline-block" href="https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/nv-tlabs/LLaMA-Mesh"><img src='https://img.shields.io/github/stars/nv-tlabs/LLaMA-Mesh?style=social'/></a>
</div>
<p>LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models. <a style="display:inline-block" href="https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/">[Project Page]</a> <a style="display:inline-block" href="https://github.com/nv-tlabs/LLaMA-Mesh">[Code]</a></p>
<p> Notice: (1) The default token length is 4096. If you observe incomplete generated meshes, try to increase the maximum token length into 8192.</p>
<p>(2) We only support generating a single mesh per dialog round. To generate another mesh, click the "clear" button and start a new dialog.</p>
<p>(3) If the LLM refuses to generate a 3D mesh, try adding more explicit instructions to the prompt, such as "create a 3D model of a table <strong>in OBJ format</strong>." A more effective approach is to request the mesh generation at the start of the dialog.</p>
</div>
'''
LICENSE = """
<p/>
---
Built with Meta Llama 3.1 8B
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-Mesh</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Create 3D meshes by chatting.</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
model_path = "Zhengyi/LLaMA-Mesh"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cuda:0", torch_dtype=torch.float16).to('cuda')
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
from trimesh.exchange.gltf import export_glb
import gradio as gr
import trimesh
import numpy as np
import tempfile
def apply_gradient_color(mesh_text):
"""
Apply a gradient color to the mesh vertices based on the Y-axis and save as GLB.
Args:
mesh_text (str): The input mesh in OBJ format as a string.
Returns:
str: Path to the GLB file with gradient colors applied.
"""
# Load the mesh
temp_file = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
with open(temp_file+".obj", "w") as f:
f.write(mesh_text)
# return temp_file
mesh = trimesh.load_mesh(temp_file+".obj", file_type='obj')
# Get vertex coordinates
vertices = mesh.vertices
y_values = vertices[:, 1] # Y-axis values
# Normalize Y values to range [0, 1] for color mapping
y_normalized = (y_values - y_values.min()) / (y_values.max() - y_values.min())
# Generate colors: Map normalized Y values to RGB gradient (e.g., blue to red)
colors = np.zeros((len(vertices), 4)) # RGBA
colors[:, 0] = y_normalized # Red channel
colors[:, 2] = 1 - y_normalized # Blue channel
colors[:, 3] = 1.0 # Alpha channel (fully opaque)
# Attach colors to mesh vertices
mesh.visual.vertex_colors = colors
# Export to GLB format
glb_path = temp_file+".glb"
with open(glb_path, "wb") as f:
f.write(export_glb(mesh))
return glb_path
def visualize_mesh(mesh_text):
"""
Convert the provided 3D mesh text into a visualizable format.
This function assumes the input is in OBJ format.
"""
temp_file = "temp_mesh.obj"
with open(temp_file, "w") as f:
f.write(mesh_text)
return temp_file
# @spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
with gr.Column():
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
with gr.Row():
with gr.Column(scale=3):
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=8192,
step=1,
value=4096,
label="Max new tokens",
render=False),
],
examples=[
['Create a 3D model of a wooden hammer'],
['Create a 3D model of a pyramid in obj format'],
['Create a 3D model of a cabinet.'],
['Create a low poly 3D model of a coffe cup'],
['Create a 3D model of a table.'],
["Create a low poly 3D model of a tree."],
['Write a python code for sorting.'],
['How to setup a human base on Mars? Give short answer.'],
['Explain theory of relativity to me like I’m 8 years old.'],
['What is 9,000 * 9,000?'],
['Create a 3D model of a soda can.'],
['Create a 3D model of a sword.'],
['Create a 3D model of a wooden barrel'],
['Create a 3D model of a chair.']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
with gr.Column(scale=2):
output_model = gr.Model3D(
label="3D Mesh Visualization",
interactive=False,
)
gr.Markdown("You can copy the generated 3d objects in the left and paste in the textbox below. Put the button and you will see the visualization of the 3D mesh.")
# Add the text box for 3D mesh input and button
mesh_input = gr.Textbox(
label="3D Mesh Input",
placeholder="Paste your 3D mesh in OBJ format here...",
lines=5,
)
visualize_button = gr.Button("Visualize 3D Mesh")
# Link the button to the visualization function
visualize_button.click(
fn=apply_gradient_color,
inputs=[mesh_input],
outputs=[output_model]
)
if __name__ == "__main__":
demo.launch()