|
import os
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
import gradio as gr
|
|
import os
|
|
|
|
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
from threading import Thread
|
|
import torch
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
|
|
DESCRIPTION = '''
|
|
<div>
|
|
<h1 style="text-align: center;">LLaMA-Mesh</h1>
|
|
<div>
|
|
<a style="display:inline-block" href="https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
|
|
<a style="display:inline-block; margin-left: .5em" href="https://github.com/nv-tlabs/LLaMA-Mesh"><img src='https://img.shields.io/github/stars/nv-tlabs/LLaMA-Mesh?style=social'/></a>
|
|
</div>
|
|
<p>LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models. <a style="display:inline-block" href="https://research.nvidia.com/labs/toronto-ai/LLaMA-Mesh/">[Project Page]</a> <a style="display:inline-block" href="https://github.com/nv-tlabs/LLaMA-Mesh">[Code]</a></p>
|
|
<p> Notice: (1) The default token length is 4096. If you observe incomplete generated meshes, try to increase the maximum token length into 8192.</p>
|
|
<p>(2) We only support generating a single mesh per dialog round. To generate another mesh, click the "clear" button and start a new dialog.</p>
|
|
<p>(3) If the LLM refuses to generate a 3D mesh, try adding more explicit instructions to the prompt, such as "create a 3D model of a table <strong>in OBJ format</strong>." A more effective approach is to request the mesh generation at the start of the dialog.</p>
|
|
</div>
|
|
'''
|
|
|
|
LICENSE = """
|
|
<p/>
|
|
|
|
---
|
|
Built with Meta Llama 3.1 8B
|
|
"""
|
|
|
|
PLACEHOLDER = """
|
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-Mesh</h1>
|
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Create 3D meshes by chatting.</p>
|
|
</div>
|
|
"""
|
|
|
|
|
|
css = """
|
|
h1 {
|
|
text-align: center;
|
|
display: block;
|
|
}
|
|
|
|
#duplicate-button {
|
|
margin: auto;
|
|
color: white;
|
|
background: #1565c0;
|
|
border-radius: 100vh;
|
|
}
|
|
"""
|
|
|
|
model_path = "Zhengyi/LLaMA-Mesh"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cuda:0", torch_dtype=torch.float16).to('cuda')
|
|
terminators = [
|
|
tokenizer.eos_token_id,
|
|
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
|
]
|
|
|
|
|
|
from trimesh.exchange.gltf import export_glb
|
|
import gradio as gr
|
|
import trimesh
|
|
import numpy as np
|
|
import tempfile
|
|
def apply_gradient_color(mesh_text):
|
|
"""
|
|
Apply a gradient color to the mesh vertices based on the Y-axis and save as GLB.
|
|
Args:
|
|
mesh_text (str): The input mesh in OBJ format as a string.
|
|
Returns:
|
|
str: Path to the GLB file with gradient colors applied.
|
|
"""
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name
|
|
with open(temp_file+".obj", "w") as f:
|
|
f.write(mesh_text)
|
|
|
|
mesh = trimesh.load_mesh(temp_file+".obj", file_type='obj')
|
|
|
|
|
|
vertices = mesh.vertices
|
|
y_values = vertices[:, 1]
|
|
|
|
|
|
y_normalized = (y_values - y_values.min()) / (y_values.max() - y_values.min())
|
|
|
|
|
|
colors = np.zeros((len(vertices), 4))
|
|
colors[:, 0] = y_normalized
|
|
colors[:, 2] = 1 - y_normalized
|
|
colors[:, 3] = 1.0
|
|
|
|
|
|
mesh.visual.vertex_colors = colors
|
|
|
|
|
|
glb_path = temp_file+".glb"
|
|
with open(glb_path, "wb") as f:
|
|
f.write(export_glb(mesh))
|
|
|
|
return glb_path
|
|
|
|
def visualize_mesh(mesh_text):
|
|
"""
|
|
Convert the provided 3D mesh text into a visualizable format.
|
|
This function assumes the input is in OBJ format.
|
|
"""
|
|
temp_file = "temp_mesh.obj"
|
|
with open(temp_file, "w") as f:
|
|
f.write(mesh_text)
|
|
return temp_file
|
|
|
|
|
|
def chat_llama3_8b(message: str,
|
|
history: list,
|
|
temperature: float,
|
|
max_new_tokens: int
|
|
) -> str:
|
|
"""
|
|
Generate a streaming response using the llama3-8b model.
|
|
Args:
|
|
message (str): The input message.
|
|
history (list): The conversation history used by ChatInterface.
|
|
temperature (float): The temperature for generating the response.
|
|
max_new_tokens (int): The maximum number of new tokens to generate.
|
|
Returns:
|
|
str: The generated response.
|
|
"""
|
|
conversation = []
|
|
for user, assistant in history:
|
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
|
conversation.append({"role": "user", "content": message})
|
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
generate_kwargs = dict(
|
|
input_ids= input_ids,
|
|
streamer=streamer,
|
|
max_new_tokens=max_new_tokens,
|
|
do_sample=True,
|
|
temperature=temperature,
|
|
eos_token_id=terminators,
|
|
)
|
|
|
|
if temperature == 0:
|
|
generate_kwargs['do_sample'] = False
|
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
t.start()
|
|
|
|
outputs = []
|
|
for text in streamer:
|
|
outputs.append(text)
|
|
|
|
yield "".join(outputs)
|
|
|
|
|
|
|
|
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
|
|
|
with gr.Blocks(fill_height=True, css=css) as demo:
|
|
with gr.Column():
|
|
gr.Markdown(DESCRIPTION)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
gr.ChatInterface(
|
|
fn=chat_llama3_8b,
|
|
chatbot=chatbot,
|
|
fill_height=True,
|
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
|
additional_inputs=[
|
|
gr.Slider(minimum=0,
|
|
maximum=1,
|
|
step=0.1,
|
|
value=0.95,
|
|
label="Temperature",
|
|
render=False),
|
|
gr.Slider(minimum=128,
|
|
maximum=8192,
|
|
step=1,
|
|
value=4096,
|
|
label="Max new tokens",
|
|
render=False),
|
|
],
|
|
examples=[
|
|
['Create a 3D model of a wooden hammer'],
|
|
['Create a 3D model of a pyramid in obj format'],
|
|
['Create a 3D model of a cabinet.'],
|
|
['Create a low poly 3D model of a coffe cup'],
|
|
['Create a 3D model of a table.'],
|
|
["Create a low poly 3D model of a tree."],
|
|
['Write a python code for sorting.'],
|
|
['How to setup a human base on Mars? Give short answer.'],
|
|
['Explain theory of relativity to me like I’m 8 years old.'],
|
|
['What is 9,000 * 9,000?'],
|
|
['Create a 3D model of a soda can.'],
|
|
['Create a 3D model of a sword.'],
|
|
['Create a 3D model of a wooden barrel'],
|
|
['Create a 3D model of a chair.']
|
|
],
|
|
cache_examples=False,
|
|
)
|
|
gr.Markdown(LICENSE)
|
|
|
|
with gr.Column(scale=2):
|
|
output_model = gr.Model3D(
|
|
label="3D Mesh Visualization",
|
|
interactive=False,
|
|
)
|
|
gr.Markdown("You can copy the generated 3d objects in the left and paste in the textbox below. Put the button and you will see the visualization of the 3D mesh.")
|
|
|
|
|
|
mesh_input = gr.Textbox(
|
|
label="3D Mesh Input",
|
|
placeholder="Paste your 3D mesh in OBJ format here...",
|
|
lines=5,
|
|
)
|
|
visualize_button = gr.Button("Visualize 3D Mesh")
|
|
|
|
|
|
visualize_button.click(
|
|
fn=apply_gradient_color,
|
|
inputs=[mesh_input],
|
|
outputs=[output_model]
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|
|
|
|
|
|
|
|
|
|
|