Spaces:
Sleeping
Sleeping
Update custom_pipeline.py
Browse files- custom_pipeline.py +23 -54
custom_pipeline.py
CHANGED
@@ -130,60 +130,29 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
130 |
|
131 |
# Handle guidance
|
132 |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
133 |
-
|
134 |
-
# static method that can be jitted
|
135 |
-
@staticmethod
|
136 |
-
@torch.jit.script
|
137 |
-
def _denoising_loop_static(latents, timesteps, pooled_prompt_embeds, prompt_embeds, text_ids, latent_image_ids, guidance, joint_attention_kwargs, transformer, scheduler):
|
138 |
-
for i, t in enumerate(timesteps):
|
139 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
-
|
141 |
-
noise_pred = transformer(
|
142 |
-
hidden_states=latents,
|
143 |
-
timestep=timestep / 1000,
|
144 |
-
guidance=guidance,
|
145 |
-
pooled_projections=pooled_prompt_embeds,
|
146 |
-
encoder_hidden_states=prompt_embeds,
|
147 |
-
txt_ids=text_ids,
|
148 |
-
img_ids=latent_image_ids,
|
149 |
-
joint_attention_kwargs=joint_attention_kwargs,
|
150 |
-
return_dict=False,
|
151 |
-
)[0]
|
152 |
-
|
153 |
-
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
154 |
-
torch.cuda.empty_cache()
|
155 |
-
return latents
|
156 |
-
|
157 |
-
# Make the core denoising loop a static method
|
158 |
-
self._denoising_loop = torch.cuda.make_graphed_callables(
|
159 |
-
_denoising_loop_static,
|
160 |
-
(
|
161 |
-
latents.clone(), # Example inputs for warmup
|
162 |
-
timesteps.clone(),
|
163 |
-
pooled_prompt_embeds.clone(),
|
164 |
-
prompt_embeds.clone(),
|
165 |
-
text_ids.clone(),
|
166 |
-
latent_image_ids.clone(),
|
167 |
-
guidance.clone(),
|
168 |
-
self._joint_attention_kwargs,
|
169 |
-
self.transformer,
|
170 |
-
self.scheduler
|
171 |
-
)
|
172 |
-
)
|
173 |
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Final image
|
189 |
return self._decode_latents_to_image(latents, height, width, output_type)
|
@@ -196,4 +165,4 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
196 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
197 |
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
198 |
image = vae.decode(latents, return_dict=False)[0]
|
199 |
-
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
130 |
|
131 |
# Handle guidance
|
132 |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# 6. Denoising loop
|
135 |
+
for i, t in enumerate(timesteps):
|
136 |
+
if self.interrupt:
|
137 |
+
continue
|
138 |
+
|
139 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
+
|
141 |
+
noise_pred = self.transformer(
|
142 |
+
hidden_states=latents,
|
143 |
+
timestep=timestep / 1000,
|
144 |
+
guidance=guidance,
|
145 |
+
pooled_projections=pooled_prompt_embeds,
|
146 |
+
encoder_hidden_states=prompt_embeds,
|
147 |
+
txt_ids=text_ids,
|
148 |
+
img_ids=latent_image_ids,
|
149 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
+
return_dict=False,
|
151 |
+
)[0]
|
152 |
+
|
153 |
+
# Yield intermediate result
|
154 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
155 |
+
torch.cuda.empty_cache()
|
156 |
|
157 |
# Final image
|
158 |
return self._decode_latents_to_image(latents, height, width, output_type)
|
|
|
165 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
166 |
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
167 |
image = vae.decode(latents, return_dict=False)[0]
|
168 |
+
return self.image_processor.postprocess(image, output_type=output_type)[0]
|