File size: 4,583 Bytes
ffbcf9e
b789e6e
ffbcf9e
 
b789e6e
ffbcf9e
 
b789e6e
ffbcf9e
b789e6e
acebad3
b789e6e
acebad3
ffbcf9e
b789e6e
ffbcf9e
b789e6e
 
ffbcf9e
53f1f2c
 
b789e6e
 
ffbcf9e
 
acebad3
 
ffbcf9e
a321f01
 
 
 
 
 
 
53f1f2c
a321f01
53f1f2c
a321f01
 
 
 
acebad3
53f1f2c
b782b56
a321f01
acebad3
a321f01
 
6a66177
53f1f2c
b789e6e
a321f01
b789e6e
 
 
 
 
 
 
 
 
 
 
acebad3
b789e6e
 
 
acebad3
ffbcf9e
 
53f1f2c
ffbcf9e
 
 
 
 
 
 
 
 
a321f01
ffbcf9e
a321f01
ffbcf9e
 
 
a321f01
ffbcf9e
 
 
acebad3
53f1f2c
 
 
acebad3
a321f01
ffbcf9e
53f1f2c
a321f01
ffbcf9e
 
53f1f2c
a321f01
ffbcf9e
 
 
b789e6e
acebad3
ffbcf9e
 
b789e6e
ffbcf9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def main():
    print("[INFO] Starting main function...")
    if torch.cuda.is_available():
        device = "cuda:0"
        print("[INFO] CUDA is available. Using GPU device.")
    else:
        device = "cpu"
        print("[INFO] CUDA is not available. Using CPU device.")

    print("[INFO] Downloading model configuration...")
    model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d", filename="config_re10k_v1.yaml")
    print("[INFO] Downloading model weights...")
    model_path = hf_hub_download(repo_id="einsafutdinov/flash3d", filename="model_re10k_v1.pth")

    print("[INFO] Loading model configuration...")
    cfg = OmegaConf.load(model_cfg_path)
    
    print("[INFO] Initializing GaussianPredictor model...")
    model = GaussianPredictor(cfg)
    device = torch.device(device)
    model.to(device)
    
    print("[INFO] Loading model weights...")
    model.load_model(model_path)

    pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
    to_tensor = TT.ToTensor()

    def check_input_image(input_image):
        print("[DEBUG] Checking input image...")
        if input_image is None:
            print("[ERROR] No image uploaded!")
            raise gr.Error("No image uploaded!")
        print("[INFO] Input image is valid.")

    def preprocess(image, resolution):
        print("[DEBUG] Preprocessing image...")
        image = TTF.resize(image, (resolution, resolution), interpolation=TT.InterpolationMode.BICUBIC)
        image = pad_border_fn(image)
        print("[INFO] Image preprocessing complete.")
        return image

    @spaces.GPU(duration=120)
    def reconstruct_and_export(image, num_gauss):
        print("[DEBUG] Starting reconstruction and export...")
        image = to_tensor(image).to(device).unsqueeze(0)
        inputs = {("color_aug", 0, 0): image}
        print("[INFO] Passing image through the model...")
        outputs = model(inputs)
        print(f"[INFO] Saving output to {ply_out_path}...")
        save_ply(outputs, ply_out_path, num_gauss=num_gauss)
        print("[INFO] Reconstruction and export complete.")
        return ply_out_path
    
    ply_out_path = f'./mesh.ply'

    css = """
        h1 {
            text-align: center;
            display:block;
        }
        """

    with gr.Blocks(css=css) as demo:
        gr.Markdown("# Flash3D")
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                with gr.Row():
                    input_image = gr.Image(label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image")
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")
                with gr.Row(variant="panel"): 
                    gr.Examples(
                        examples=[
                            './demo_examples/bedroom_01.png',
                            './demo_examples/kitti_02.png',
                            './demo_examples/kitti_03.png',
                            './demo_examples/re10k_04.jpg',
                            './demo_examples/re10k_05.jpg',
                            './demo_examples/re10k_06.jpg',
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )
                with gr.Row():
                    processed_image = gr.Image(label="Processed Image", interactive=False)
            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        output_model = gr.Model3D(height=512, label="Output Model", interactive=False)
                with gr.Row():
                    resolution = gr.Slider(minimum=256, maximum=1024, step=64, label="Image Resolution", value=cfg.dataset.height)
                    num_gauss = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Gaussian Components", value=2)

        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image, resolution],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image, num_gauss],
            outputs=[output_model],
        )

    demo.queue(max_size=1)
    print("[INFO] Launching Gradio demo...")
    demo.launch(share=True)

if __name__ == "__main__":
    print("[INFO] Running application...")
    main()