File size: 4,179 Bytes
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import sys
import spaces
sys.path.append("flash3d")

from omegaconf import OmegaConf
import gradio as gr
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download

from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply

def main():
    if torch.cuda.is_available():
        device = "cuda:0"
    else:
        device = "cpu"

    model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                     filename="config_re10k_v1.yaml")
    model_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                 filename="model_re10k_v1.pth")

    cfg = OmegaConf.load(model_cfg_path)
    model = GaussianPredictor(cfg)
    device = torch.device(device)
    model.to(device)
    model.load_model(model_path)

    pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
    to_tensor = TT.ToTensor()

    def check_input_image(input_image):
        if input_image is None:
            raise gr.Error("No image uploaded!")

    def preprocess(image):
        image = TTF.resize(
            image, (cfg.dataset.height, cfg.dataset.width), 
            interpolation=TT.InterpolationMode.BICUBIC
        )
        image = pad_border_fn(image)
        return image

    @spaces.GPU(duration=120)
    def reconstruct_and_export(image):
        """
        Passes image through model, outputs reconstruction in form of a dict of tensors.
        """
        image = to_tensor(image).to(device).unsqueeze(0)
        inputs = {
            ("color_aug", 0, 0): image,
        }

        outputs = model(inputs)

        # export reconstruction to ply
        save_ply(outputs, ply_out_path, num_gauss=2)

        return ply_out_path
    
    ply_out_path = f'./mesh.ply'

    css = """
        h1 {
            text-align: center;
            display:block;
        }
        """

    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Flash3D
            """
            )
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")

                with gr.Row(variant="panel"): 
                    gr.Examples(
                        examples=[
                            './demo_examples/bedroom_01.png',
                            './demo_examples/kitti_02.png',
                            './demo_examples/kitti_03.png',
                            './demo_examples/re10k_04.jpg',
                            './demo_examples/re10k_05.jpg',
                            './demo_examples/re10k_06.jpg',
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )

                with gr.Row():
                    processed_image = gr.Image(label="Processed Image", interactive=False)

            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        output_model = gr.Model3D(
                            height=512,
                            label="Output Model",
                            interactive=False
                        )

        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image],
            outputs=[output_model],
        )

    demo.queue(max_size=1)
    demo.launch(share=True)

if __name__ == "__main__":
    main()