File size: 4,671 Bytes
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from pathlib import Path
from jaxtyping import Float
import numpy as np
from scipy.spatial.transform import Rotation as R
from plyfile import PlyData, PlyElement
import torch
from torch import Tensor
from einops import rearrange, einsum


def construct_list_of_attributes(num_rest: int) -> list[str]:
    attributes = ["x", "y", "z", "nx", "ny", "nz"]
    for i in range(3):
        attributes.append(f"f_dc_{i}")
    for i in range(num_rest):
        attributes.append(f"f_rest_{i}")
    attributes.append("opacity")
    for i in range(3):
        attributes.append(f"scale_{i}")
    for i in range(4):
        attributes.append(f"rot_{i}")
    return attributes


def export_ply(
    means: Float[Tensor, "gaussian 3"],
    scales: Float[Tensor, "gaussian 3"],
    rotations: Float[Tensor, "gaussian 4"],
    harmonics: Float[Tensor, "gaussian 3 d_sh"],
    opacities: Float[Tensor, "gaussian"],
    path: Path,
):
    path = Path(path)
    # Shift the scene so that the median Gaussian is at the origin.
    means = means - means.median(dim=0).values

    # Rescale the scene so that most Gaussians are within range [-1, 1].
    scale_factor = means.abs().quantile(0.95, dim=0).max()
    means = means / scale_factor
    scales = scales / scale_factor
    scales = scales * 4.0
    scales = torch.clamp(scales, 0, 0.0075)

    # Define a rotation that makes +Z be the world up vector.
    # rotation = [
    #     [0, 0, 1],
    #     [-1, 0, 0],
    #     [0, -1, 0],
    # ]
    rotation = [
        [1, 0, 0],
        [0, 1, 0],
        [0, 0, 1],
    ]
    rotation = torch.tensor(rotation, dtype=torch.float32, device=means.device)

    # The Polycam viewer seems to start at a 45 degree angle. Since we want to be
    # looking directly at the object, we compose a 45 degree rotation onto the above
    # rotation.
    # adjustment = torch.tensor(
    #     R.from_rotvec([0, 0, -45], True).as_matrix(),
    #     dtype=torch.float32,
    #     device=means.device,
    # )
    # rotation = adjustment @ rotation

    # We also want to see the scene in camera space (as the default view). We therefore
    # compose the w2c rotation onto the above rotation.
    # rotation = rotation @ extrinsics[:3, :3].inverse()

    # Apply the rotation to the means (Gaussian positions).
    means = einsum(rotation, means, "i j, ... j -> ... i")

    # Apply the rotation to the Gaussian rotations.
    rotations = R.from_quat(rotations.detach().cpu().numpy()).as_matrix()
    rotations = rotation.detach().cpu().numpy() @ rotations
    rotations = R.from_matrix(rotations).as_quat()
    x, y, z, w = rearrange(rotations, "g xyzw -> xyzw g")
    rotations = np.stack((w, x, y, z), axis=-1)

    # Since our axes are swizzled for the spherical harmonics, we only export the DC
    # band.
    harmonics_view_invariant = harmonics

    dtype_full = [(attribute, "f4") for attribute in construct_list_of_attributes(0)]
    elements = np.empty(means.shape[0], dtype=dtype_full)
    attributes = (
        means.detach().cpu().numpy(),
        torch.zeros_like(means).detach().cpu().numpy(),
        harmonics_view_invariant.detach().cpu().contiguous().numpy(),
        opacities.detach().cpu().numpy(),
        scales.log().detach().cpu().numpy(),
        rotations,
    )
    attributes = np.concatenate(attributes, axis=1)
    elements[:] = list(map(tuple, attributes))
    path.parent.mkdir(exist_ok=True, parents=True)
    PlyData([PlyElement.describe(elements, "vertex")]).write(path)


def save_ply(outputs, path, num_gauss=3):
    pad = 32

    def crop_r(t):
        h, w = 256, 384
        H = h + pad * 2
        W = w + pad * 2
        t = rearrange(t, "b c (h w) -> b c h w", h=H, w=W)
        t = t[..., pad:H-pad, pad:W-pad]
        t = rearrange(t, "b c h w -> b c (h w)")
        return t

    def crop(t):
        h, w = 256, 384
        H = h + pad * 2
        W = w + pad * 2
        t = t[..., pad:H-pad, pad:W-pad]
        return t

    # import pdb
    # pdb.set_trace()
    means = rearrange(crop_r(outputs[('gauss_means', 0, 0)]), "(b v) c n -> b (v n) c", v=num_gauss)[0, :, :3]
    scales = rearrange(crop(outputs[('gauss_scaling', 0, 0)]), "(b v) c h w -> b (v h w) c", v=num_gauss)[0]
    rotations = rearrange(crop(outputs[('gauss_rotation', 0, 0)]), "(b v) c h w -> b (v h w) c", v=num_gauss)[0]
    opacities = rearrange(crop(outputs[('gauss_opacity', 0, 0)]), "(b v) c h w -> b (v h w) c", v=num_gauss)[0]
    harmonics = rearrange(crop(outputs[('gauss_features_dc', 0, 0)]), "(b v) c h w -> b (v h w) c", v=num_gauss)[0]

    export_ply(
        means,
        scales,
        rotations,
        harmonics,
        opacities,
        path
    )