File size: 17,933 Bytes
ffbcf9e
 
b789e6e
ffbcf9e
 
 
 
 
 
 
b789e6e
ffbcf9e
 
 
 
 
b789e6e
 
ffbcf9e
 
b789e6e
ffbcf9e
 
b789e6e
ffbcf9e
b789e6e
 
ffbcf9e
 
b789e6e
ffbcf9e
 
 
b789e6e
 
ffbcf9e
b789e6e
 
 
ffbcf9e
 
b789e6e
 
 
 
ffbcf9e
 
b789e6e
 
 
ffbcf9e
b789e6e
ffbcf9e
b789e6e
ffbcf9e
b789e6e
ffbcf9e
b789e6e
ffbcf9e
b789e6e
ffbcf9e
b789e6e
 
ffbcf9e
 
 
 
b789e6e
ffbcf9e
b789e6e
ffbcf9e
 
b789e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffbcf9e
 
 
 
b789e6e
 
ffbcf9e
 
 
 
 
b789e6e
 
ffbcf9e
 
b789e6e
 
ffbcf9e
b789e6e
ffbcf9e
 
 
b789e6e
ffbcf9e
 
b789e6e
ffbcf9e
 
 
 
 
 
 
b789e6e
ffbcf9e
 
 
 
 
b789e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffbcf9e
 
 
b789e6e
ffbcf9e
 
 
 
 
 
 
 
b789e6e
ffbcf9e
 
 
b789e6e
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b789e6e
ffbcf9e
 
 
 
 
b789e6e
ffbcf9e
 
 
 
 
 
b789e6e
ffbcf9e
 
 
 
 
 
 
 
 
 
b789e6e
ffbcf9e
b789e6e
 
ffbcf9e
 
b789e6e
ffbcf9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import sys
import spaces
sys.path.append("flash3d")  # Add the flash3d directory to the system path for importing local modules

from omegaconf import OmegaConf
import gradio as gr
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download
import numpy as np

from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply

def main():
    print("[INFO] Starting main function...")
    # Determine if CUDA (GPU) is available and set the device accordingly
    if torch.cuda.is_available():
        device = "cuda:0"
        print("[INFO] CUDA is available. Using GPU device.")
    else:
        device = "cpu"
        print("[INFO] CUDA is not available. Using CPU device.")

    # Download model configuration and weights from Hugging Face Hub
    print("[INFO] Downloading model configuration...")
    model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                     filename="config_re10k_v1.yaml")
    print("[INFO] Downloading model weights...")
    model_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                 filename="model_re10k_v1.pth")

    # Load model configuration using OmegaConf
    print("[INFO] Loading model configuration...")
    cfg = OmegaConf.load(model_cfg_path)
    
    # Initialize the GaussianPredictor model with the loaded configuration
    print("[INFO] Initializing GaussianPredictor model...")
    model = GaussianPredictor(cfg)
    device = torch.device(device)
    model.to(device)  # Move the model to the specified device (CPU or GPU)
    
    # Load the pre-trained model weights
    print("[INFO] Loading model weights...")
    model.load_model(model_path)

    # Define transformation functions for image preprocessing
    pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))  # Padding to augment the image borders
    to_tensor = TT.ToTensor()  # Convert image to tensor

    # Function to check if an image is uploaded by the user
    def check_input_image(input_image):
        print("[DEBUG] Checking input image...")
        if input_image is None:
            print("[ERROR] No image uploaded!")
            raise gr.Error("No image uploaded!")
        print("[INFO] Input image is valid.")

    # Function to preprocess the input image before passing it to the model
    def preprocess(image):
        print("[DEBUG] Preprocessing image...")
        # Resize the image to the desired height and width specified in the configuration
        image = TTF.resize(
            image, (cfg.dataset.height, cfg.dataset.width), 
            interpolation=TT.InterpolationMode.BICUBIC
        )
        # Apply padding to the image
        image = pad_border_fn(image)
        print("[INFO] Image preprocessing complete.")
        return image

    # Function to reconstruct the 3D model from the input image and export it as a PLY file
    import sys
import spaces
sys.path.append("flash3d")  # Add the flash3d directory to the system path for importing local modules

from omegaconf import OmegaConf
import gradio as gr
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download
import numpy as np

from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply

def main():
    print("[INFO] Starting main function...")
    # Determine if CUDA (GPU) is available and set the device accordingly
    if torch.cuda.is_available():
        device = "cuda:0"
        print("[INFO] CUDA is available. Using GPU device.")
    else:
        device = "cpu"
        print("[INFO] CUDA is not available. Using CPU device.")

    # Download model configuration and weights from Hugging Face Hub
    print("[INFO] Downloading model configuration...")
    model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                     filename="config_re10k_v1.yaml")
    print("[INFO] Downloading model weights...")
    model_path = hf_hub_download(repo_id="einsafutdinov/flash3d", 
                                 filename="model_re10k_v1.pth")

    # Load model configuration using OmegaConf
    print("[INFO] Loading model configuration...")
    cfg = OmegaConf.load(model_cfg_path)
    
    # Initialize the GaussianPredictor model with the loaded configuration
    print("[INFO] Initializing GaussianPredictor model...")
    model = GaussianPredictor(cfg)
    device = torch.device(device)
    model.to(device)  # Move the model to the specified device (CPU or GPU)
    
    # Load the pre-trained model weights
    print("[INFO] Loading model weights...")
    model.load_model(model_path)

    # Define transformation functions for image preprocessing
    pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))  # Padding to augment the image borders
    to_tensor = TT.ToTensor()  # Convert image to tensor

    # Function to check if an image is uploaded by the user
    def check_input_image(input_image):
        print("[DEBUG] Checking input image...")
        if input_image is None:
            print("[ERROR] No image uploaded!")
            raise gr.Error("No image uploaded!")
        print("[INFO] Input image is valid.")

    # Function to preprocess the input image before passing it to the model
    def preprocess(image):
        print("[DEBUG] Preprocessing image...")
        # Resize the image to the desired height and width specified in the configuration
        image = TTF.resize(
            image, (cfg.dataset.height, cfg.dataset.width), 
            interpolation=TT.InterpolationMode.BICUBIC
        )
        # Apply padding to the image
        image = pad_border_fn(image)
        print("[INFO] Image preprocessing complete.")
        return image

    # Function to reconstruct the 3D model from the input image and export it as a PLY file
    @spaces.GPU(duration=120)  # Decorator to allocate a GPU for this function during execution
    def reconstruct_and_export(image):
        """
        Passes image through model, outputs reconstruction in form of a dict of tensors.
        """
        print("[DEBUG] Starting reconstruction and export...")
        # Convert the preprocessed image to a tensor and move it to the specified device
        image = to_tensor(image).to(device).unsqueeze(0)
        inputs = {
            ("color_aug", 0, 0): image,
        }

        # Pass the image through the model to get the output
        print("[INFO] Passing image through the model...")
        outputs = model(inputs)

        # Export the reconstruction to a PLY file
        print(f"[INFO] Saving output to {ply_out_path}...")
        save_ply(outputs, ply_out_path, num_gauss=2)
        print("[INFO] Reconstruction and export complete.")

        return ply_out_path
    
    # Path to save the output PLY file
    ply_out_path = f'./mesh.ply'

    # CSS styling for the Gradio interface
    css = """
        h1 {
            text-align: center;
            display:block;
        }
        """

    # Create the Gradio user interface
    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Flash3D
            """
        )
        # Comments about the app's behavior and known limitations
        gr.Markdown(
            """
            ## Comments:
            1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
            2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximation and artifacts might show.
            3. Known limitations include:
            - A black dot appearing on the model from some viewpoints.
            - See-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes.
            - Back of objects are blurry: this is a model limitation due to it being deterministic.
            4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
            ## How does it work?
            Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image, 
            in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours, and locations.
            The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
            The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
            The rendering is also very fast, due to using Gaussian Splatting.
            Combined, this results in very cheap training and high-quality results.
            For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
            """
        )
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                with gr.Row():
                    # Input image component for the user to upload an image
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                with gr.Row():
                    # Button to trigger the generation process
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")

                with gr.Row(variant="panel"): 
                    # Examples panel to provide sample images for users
                    gr.Examples(
                        examples=[
                            './demo_examples/bedroom_01.png',
                            './demo_examples/kitti_02.png',
                            './demo_examples/kitti_03.png',
                            './demo_examples/re10k_04.jpg',
                            './demo_examples/re10k_05.jpg',
                            './demo_examples/re10k_06.jpg',
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )

                with gr.Row():
                    # Display the preprocessed image (after resizing and padding)
                    processed_image = gr.Image(label="Processed Image", interactive=False)

            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        # 3D model viewer to display the reconstructed model
                        output_model = gr.Model3D(
                            height=512,
                            label="Output Model",
                            interactive=False
                        )

        # Define the workflow for the Generate button
        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image],
            outputs=[output_model],
        )

    # Queue the requests to handle them sequentially (to avoid GPU resource conflicts)
    demo.queue(max_size=1)
    print("[INFO] Launching Gradio demo...")
    demo.launch(share=True)  # Launch the Gradio interface and allow public sharing

if __name__ == "__main__":
    print("[INFO] Running application...")
    main()  # Decorator to allocate a GPU for this function during execution
    def reconstruct_and_export(image):
        """
        Passes image through model, outputs reconstruction in form of a dict of tensors.
        """
        print("[DEBUG] Starting reconstruction and export...")
        # Convert the preprocessed image to a tensor and move it to the specified device
        image = to_tensor(image).to(device).unsqueeze(0)
        inputs = {
            ("color_aug", 0, 0): image,
        }

        # Pass the image through the model to get the output
        print("[INFO] Passing image through the model...")
        outputs = model(inputs)

        # Export the reconstruction to a PLY file
        print(f"[INFO] Saving output to {ply_out_path}...")
        save_ply(outputs, ply_out_path, num_gauss=2)
        print("[INFO] Reconstruction and export complete.")

        return ply_out_path
    
    # Path to save the output PLY file
    ply_out_path = f'./mesh.ply'

    # CSS styling for the Gradio interface
    css = """
        h1 {
            text-align: center;
            display:block;
        }
        """

    # Create the Gradio user interface
    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Flash3D
            """
        )
        # Comments about the app's behavior and known limitations
        gr.Markdown(
            """
            ## Comments:
            1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
            2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximation and artifacts might show.
            3. Known limitations include:
            - A black dot appearing on the model from some viewpoints.
            - See-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes.
            - Back of objects are blurry: this is a model limitation due to it being deterministic.
            4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
            ## How does it work?
            Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image, 
            in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours, and locations.
            The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
            The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
            The rendering is also very fast, due to using Gaussian Splatting.
            Combined, this results in very cheap training and high-quality results.
            For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
            """
        )
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                with gr.Row():
                    # Input image component for the user to upload an image
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                with gr.Row():
                    # Button to trigger the generation process
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")

                with gr.Row(variant="panel"): 
                    # Examples panel to provide sample images for users
                    gr.Examples(
                        examples=[
                            './demo_examples/bedroom_01.png',
                            './demo_examples/kitti_02.png',
                            './demo_examples/kitti_03.png',
                            './demo_examples/re10k_04.jpg',
                            './demo_examples/re10k_05.jpg',
                            './demo_examples/re10k_06.jpg',
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )

                with gr.Row():
                    # Display the preprocessed image (after resizing and padding)
                    processed_image = gr.Image(label="Processed Image", interactive=False)

            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        # 3D model viewer to display the reconstructed model
                        output_model = gr.Model3D(
                            height=512,
                            label="Output Model",
                            interactive=False
                        )

        # Define the workflow for the Generate button
        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image],
            outputs=[output_model],
        )

    # Queue the requests to handle them sequentially (to avoid GPU resource conflicts)
    demo.queue(max_size=1)
    print("[INFO] Launching Gradio demo...")
    demo.launch(share=True)  # Launch the Gradio interface and allow public sharing

if __name__ == "__main__":
    print("[INFO] Running application...")
    main()