File size: 17,933 Bytes
ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e b789e6e ffbcf9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import sys
import spaces
sys.path.append("flash3d") # Add the flash3d directory to the system path for importing local modules
from omegaconf import OmegaConf
import gradio as gr
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download
import numpy as np
from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply
def main():
print("[INFO] Starting main function...")
# Determine if CUDA (GPU) is available and set the device accordingly
if torch.cuda.is_available():
device = "cuda:0"
print("[INFO] CUDA is available. Using GPU device.")
else:
device = "cpu"
print("[INFO] CUDA is not available. Using CPU device.")
# Download model configuration and weights from Hugging Face Hub
print("[INFO] Downloading model configuration...")
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="config_re10k_v1.yaml")
print("[INFO] Downloading model weights...")
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="model_re10k_v1.pth")
# Load model configuration using OmegaConf
print("[INFO] Loading model configuration...")
cfg = OmegaConf.load(model_cfg_path)
# Initialize the GaussianPredictor model with the loaded configuration
print("[INFO] Initializing GaussianPredictor model...")
model = GaussianPredictor(cfg)
device = torch.device(device)
model.to(device) # Move the model to the specified device (CPU or GPU)
# Load the pre-trained model weights
print("[INFO] Loading model weights...")
model.load_model(model_path)
# Define transformation functions for image preprocessing
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug)) # Padding to augment the image borders
to_tensor = TT.ToTensor() # Convert image to tensor
# Function to check if an image is uploaded by the user
def check_input_image(input_image):
print("[DEBUG] Checking input image...")
if input_image is None:
print("[ERROR] No image uploaded!")
raise gr.Error("No image uploaded!")
print("[INFO] Input image is valid.")
# Function to preprocess the input image before passing it to the model
def preprocess(image):
print("[DEBUG] Preprocessing image...")
# Resize the image to the desired height and width specified in the configuration
image = TTF.resize(
image, (cfg.dataset.height, cfg.dataset.width),
interpolation=TT.InterpolationMode.BICUBIC
)
# Apply padding to the image
image = pad_border_fn(image)
print("[INFO] Image preprocessing complete.")
return image
# Function to reconstruct the 3D model from the input image and export it as a PLY file
import sys
import spaces
sys.path.append("flash3d") # Add the flash3d directory to the system path for importing local modules
from omegaconf import OmegaConf
import gradio as gr
import torch
import torchvision.transforms as TT
import torchvision.transforms.functional as TTF
from huggingface_hub import hf_hub_download
import numpy as np
from networks.gaussian_predictor import GaussianPredictor
from util.vis3d import save_ply
def main():
print("[INFO] Starting main function...")
# Determine if CUDA (GPU) is available and set the device accordingly
if torch.cuda.is_available():
device = "cuda:0"
print("[INFO] CUDA is available. Using GPU device.")
else:
device = "cpu"
print("[INFO] CUDA is not available. Using CPU device.")
# Download model configuration and weights from Hugging Face Hub
print("[INFO] Downloading model configuration...")
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="config_re10k_v1.yaml")
print("[INFO] Downloading model weights...")
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
filename="model_re10k_v1.pth")
# Load model configuration using OmegaConf
print("[INFO] Loading model configuration...")
cfg = OmegaConf.load(model_cfg_path)
# Initialize the GaussianPredictor model with the loaded configuration
print("[INFO] Initializing GaussianPredictor model...")
model = GaussianPredictor(cfg)
device = torch.device(device)
model.to(device) # Move the model to the specified device (CPU or GPU)
# Load the pre-trained model weights
print("[INFO] Loading model weights...")
model.load_model(model_path)
# Define transformation functions for image preprocessing
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug)) # Padding to augment the image borders
to_tensor = TT.ToTensor() # Convert image to tensor
# Function to check if an image is uploaded by the user
def check_input_image(input_image):
print("[DEBUG] Checking input image...")
if input_image is None:
print("[ERROR] No image uploaded!")
raise gr.Error("No image uploaded!")
print("[INFO] Input image is valid.")
# Function to preprocess the input image before passing it to the model
def preprocess(image):
print("[DEBUG] Preprocessing image...")
# Resize the image to the desired height and width specified in the configuration
image = TTF.resize(
image, (cfg.dataset.height, cfg.dataset.width),
interpolation=TT.InterpolationMode.BICUBIC
)
# Apply padding to the image
image = pad_border_fn(image)
print("[INFO] Image preprocessing complete.")
return image
# Function to reconstruct the 3D model from the input image and export it as a PLY file
@spaces.GPU(duration=120) # Decorator to allocate a GPU for this function during execution
def reconstruct_and_export(image):
"""
Passes image through model, outputs reconstruction in form of a dict of tensors.
"""
print("[DEBUG] Starting reconstruction and export...")
# Convert the preprocessed image to a tensor and move it to the specified device
image = to_tensor(image).to(device).unsqueeze(0)
inputs = {
("color_aug", 0, 0): image,
}
# Pass the image through the model to get the output
print("[INFO] Passing image through the model...")
outputs = model(inputs)
# Export the reconstruction to a PLY file
print(f"[INFO] Saving output to {ply_out_path}...")
save_ply(outputs, ply_out_path, num_gauss=2)
print("[INFO] Reconstruction and export complete.")
return ply_out_path
# Path to save the output PLY file
ply_out_path = f'./mesh.ply'
# CSS styling for the Gradio interface
css = """
h1 {
text-align: center;
display:block;
}
"""
# Create the Gradio user interface
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Flash3D
"""
)
# Comments about the app's behavior and known limitations
gr.Markdown(
"""
## Comments:
1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximation and artifacts might show.
3. Known limitations include:
- A black dot appearing on the model from some viewpoints.
- See-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes.
- Back of objects are blurry: this is a model limitation due to it being deterministic.
4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
## How does it work?
Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours, and locations.
The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
The rendering is also very fast, due to using Gaussian Splatting.
Combined, this results in very cheap training and high-quality results.
For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
# Input image component for the user to upload an image
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
with gr.Row():
# Button to trigger the generation process
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
# Examples panel to provide sample images for users
gr.Examples(
examples=[
'./demo_examples/bedroom_01.png',
'./demo_examples/kitti_02.png',
'./demo_examples/kitti_03.png',
'./demo_examples/re10k_04.jpg',
'./demo_examples/re10k_05.jpg',
'./demo_examples/re10k_06.jpg',
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Row():
# Display the preprocessed image (after resizing and padding)
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Column(scale=2):
with gr.Row():
with gr.Tab("Reconstruction"):
# 3D model viewer to display the reconstructed model
output_model = gr.Model3D(
height=512,
label="Output Model",
interactive=False
)
# Define the workflow for the Generate button
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image],
outputs=[processed_image],
).success(
fn=reconstruct_and_export,
inputs=[processed_image],
outputs=[output_model],
)
# Queue the requests to handle them sequentially (to avoid GPU resource conflicts)
demo.queue(max_size=1)
print("[INFO] Launching Gradio demo...")
demo.launch(share=True) # Launch the Gradio interface and allow public sharing
if __name__ == "__main__":
print("[INFO] Running application...")
main() # Decorator to allocate a GPU for this function during execution
def reconstruct_and_export(image):
"""
Passes image through model, outputs reconstruction in form of a dict of tensors.
"""
print("[DEBUG] Starting reconstruction and export...")
# Convert the preprocessed image to a tensor and move it to the specified device
image = to_tensor(image).to(device).unsqueeze(0)
inputs = {
("color_aug", 0, 0): image,
}
# Pass the image through the model to get the output
print("[INFO] Passing image through the model...")
outputs = model(inputs)
# Export the reconstruction to a PLY file
print(f"[INFO] Saving output to {ply_out_path}...")
save_ply(outputs, ply_out_path, num_gauss=2)
print("[INFO] Reconstruction and export complete.")
return ply_out_path
# Path to save the output PLY file
ply_out_path = f'./mesh.ply'
# CSS styling for the Gradio interface
css = """
h1 {
text-align: center;
display:block;
}
"""
# Create the Gradio user interface
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Flash3D
"""
)
# Comments about the app's behavior and known limitations
gr.Markdown(
"""
## Comments:
1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximation and artifacts might show.
3. Known limitations include:
- A black dot appearing on the model from some viewpoints.
- See-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes.
- Back of objects are blurry: this is a model limitation due to it being deterministic.
4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
## How does it work?
Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours, and locations.
The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
The rendering is also very fast, due to using Gaussian Splatting.
Combined, this results in very cheap training and high-quality results.
For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
# Input image component for the user to upload an image
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
with gr.Row():
# Button to trigger the generation process
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
# Examples panel to provide sample images for users
gr.Examples(
examples=[
'./demo_examples/bedroom_01.png',
'./demo_examples/kitti_02.png',
'./demo_examples/kitti_03.png',
'./demo_examples/re10k_04.jpg',
'./demo_examples/re10k_05.jpg',
'./demo_examples/re10k_06.jpg',
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Row():
# Display the preprocessed image (after resizing and padding)
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Column(scale=2):
with gr.Row():
with gr.Tab("Reconstruction"):
# 3D model viewer to display the reconstructed model
output_model = gr.Model3D(
height=512,
label="Output Model",
interactive=False
)
# Define the workflow for the Generate button
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image],
outputs=[processed_image],
).success(
fn=reconstruct_and_export,
inputs=[processed_image],
outputs=[output_model],
)
# Queue the requests to handle them sequentially (to avoid GPU resource conflicts)
demo.queue(max_size=1)
print("[INFO] Launching Gradio demo...")
demo.launch(share=True) # Launch the Gradio interface and allow public sharing
if __name__ == "__main__":
print("[INFO] Running application...")
main() |