File size: 19,974 Bytes
ffbcf9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import json
from pathlib import Path
from typing import List, Tuple
from math import ceil
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange
from unidepth.models.unidepthv1 import UniDepthV1
from unidepth.utils.constants import IMAGENET_DATASET_MEAN, IMAGENET_DATASET_STD
from unidepth.utils.geometric import (
generate_rays,
spherical_zbuffer_to_euclidean,
flat_interpolate,
)
from unidepth.layers import (
MLP,
AttentionBlock,
NystromBlock,
PositionEmbeddingSine,
ConvUpsample,
)
from unidepth.utils.sht import rsh_cart_8
from networks.gaussian_decoder import get_splits_and_inits
# inference helpers
def _paddings(image_shape, network_shape):
cur_h, cur_w = image_shape
h, w = network_shape
pad_top, pad_bottom = (h - cur_h) // 2, h - cur_h - (h - cur_h) // 2
pad_left, pad_right = (w - cur_w) // 2, w - cur_w - (w - cur_w) // 2
return pad_left, pad_right, pad_top, pad_bottom
def _shapes(image_shape, network_shape):
h, w = image_shape
input_ratio = w / h
output_ratio = network_shape[1] / network_shape[0]
if output_ratio > input_ratio:
ratio = network_shape[0] / h
elif output_ratio <= input_ratio:
ratio = network_shape[1] / w
return (ceil(h * ratio - 0.5), ceil(w * ratio - 0.5)), ratio
def _preprocess(rgbs, intrinsics, shapes, pads, ratio, output_shapes):
(pad_left, pad_right, pad_top, pad_bottom) = pads
rgbs = F.interpolate(
rgbs, size=shapes, mode="bilinear", align_corners=False, antialias=True
)
rgbs = F.pad(rgbs, (pad_left, pad_right, pad_top, pad_bottom), mode="constant")
if intrinsics is not None:
intrinsics = intrinsics.clone()
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio + pad_left
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio + pad_top
return rgbs, intrinsics
return rgbs, None
def _postprocess(predictions, intrinsics, shapes, pads, ratio, original_shapes):
(pad_left, pad_right, pad_top, pad_bottom) = pads
# pred mean, trim paddings, and upsample to input dim
predictions = sum(
[
F.interpolate(
x,
size=shapes,
mode="bilinear",
align_corners=False,
antialias=True,
)
for x in predictions
]
) / len(predictions)
shapes = predictions.shape[2:]
predictions = predictions[
..., pad_top : shapes[0] - pad_bottom, pad_left : shapes[1] - pad_right
]
predictions = F.interpolate(
predictions,
size=original_shapes,
mode="bilinear",
align_corners=False,
antialias=True,
)
if intrinsics is not None:
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] / ratio
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] / ratio
intrinsics[:, 0, 2] = (intrinsics[:, 0, 2] - pad_left) / ratio
intrinsics[:, 1, 2] = (intrinsics[:, 1, 2] - pad_top) / ratio
return predictions, intrinsics
def scale_intrinsics_xy(intrinsics, x_ratio, y_ratio):
intrinsics = intrinsics.clone()
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * x_ratio
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * y_ratio
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * x_ratio
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * y_ratio
return intrinsics
def scale_intrinsics(intrinsics, ratio):
intrinsics = intrinsics.clone()
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio
return intrinsics
def unidepthv1_forward(model, rgbs, intrinsics, skip_camera,
return_raw_preds=False):
B, _, H, W = rgbs.shape
rgbs = TF.normalize(
rgbs,
mean=IMAGENET_DATASET_MEAN,
std=IMAGENET_DATASET_STD,
)
(h, w), ratio = _shapes((H, W), model.image_shape)
pad_left, pad_right, pad_top, pad_bottom = _paddings((h, w), model.image_shape)
rgbs, gt_intrinsics = _preprocess(
rgbs,
intrinsics,
(h, w),
(pad_left, pad_right, pad_top, pad_bottom),
ratio,
model.image_shape,
)
encoder_outputs, cls_tokens = model.pixel_encoder(rgbs)
if "dino" in model.pixel_encoder.__class__.__name__.lower():
encoder_outputs = [
(x + y.unsqueeze(1)).contiguous()
for x, y in zip(encoder_outputs, cls_tokens)
]
# get data for decoder and adapt to given camera
inputs = {}
inputs["encoder_outputs"] = encoder_outputs
inputs["cls_tokens"] = cls_tokens
inputs["image"] = rgbs
if gt_intrinsics is not None:
rays, angles = generate_rays(
gt_intrinsics, model.image_shape, noisy=False
)
inputs["rays"] = rays
inputs["angles"] = angles
inputs["K"] = gt_intrinsics
model.pixel_decoder.test_fixed_camera = True
model.pixel_decoder.skip_camera = skip_camera
# decode all
pred_intrinsics, predictions, features, rays = model.pixel_decoder(inputs, {})
pads = (pad_left, pad_right, pad_top, pad_bottom)
# undo the reshaping and get original image size (slow)
predictions, pred_intrinsics = _postprocess(
predictions,
pred_intrinsics,
model.image_shape,
pads,
ratio,
(H, W),
)
if return_raw_preds:
return inputs, predictions
# final 3D points backprojection
intrinsics = gt_intrinsics if gt_intrinsics is not None else pred_intrinsics
angles = generate_rays(intrinsics, (H, W), noisy=False)[-1]
angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W)
points_3d = torch.cat((angles, predictions), dim=1)
points_3d = spherical_zbuffer_to_euclidean(
points_3d.permute(0, 2, 3, 1)
).permute(0, 3, 1, 2)
# output data
outputs = {
"intrinsics": intrinsics,
"points": points_3d,
"depth": predictions[:, -1:],
"depth_feats": features,
"rays": rays,
"padding": pads
}
model.pixel_decoder.test_fixed_camera = False
model.pixel_decoder.skip_camera = False
return inputs, outputs
class UniDepthDepth(nn.Module):
def __init__(
self,
cfg,
return_raw_preds=False
):
super().__init__()
self.cfg = cfg
self.return_raw_preds = return_raw_preds
if "cnvnxtl" in cfg.model.name:
self.depth_prediction_model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-cnvnxtl")
elif "vit" in cfg.model.name:
self.depth_prediction_model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
self.skip_camera = True
def get_depth(self, img, intrinsics):
depth_inputs, outputs = unidepthv1_forward(
self.depth_prediction_model,
img,
intrinsics,
self.skip_camera,
return_raw_preds=self.return_raw_preds)
return outputs
def forward(self, inputs):
input_img = inputs["color_aug", 0, 0]
# here we need the intrinsics of the source image to condition on
# the depth prediction. needs to account for padding
if ("K_src", 0) in inputs:
intrinsics = inputs[("K_src", 0)]
else:
intrinsics = None
depth_inputs, outputs = unidepthv1_forward(
self.depth_prediction_model,
input_img,
intrinsics,
self.skip_camera,
return_raw_preds=self.return_raw_preds)
return depth_inputs, outputs
class UniDepthUnprojector(nn.Module):
def __init__(
self,
cfg
):
super().__init__()
self.cfg = cfg
if cfg.model.name == "unidepth_unprojector_cnvnxtl":
model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-cnvnxtl")
elif cfg.model.name == "unidepth_unprojector_vit":
model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
self.unidepth = model
self.skip_camera = True
self.register_buffer("gauss_opacity", torch.ones(1, 1, 1).float())
self.register_buffer("gauss_scaling", torch.ones(3, 1, 1).float())
self.register_buffer("gauss_rotation", torch.ones(4, 1, 1).float() * 0.5)
self.register_buffer("gauss_features_rest", torch.zeros(9, 1, 1).float())
self.register_buffer("gauss_offset", torch.zeros(3, 1, 1).float())
self.all_params = nn.ParameterDict({
"opacity_scaling": nn.Parameter(torch.tensor(cfg.model.opacity_bias).float()),
"scale_scaling": nn.Parameter(torch.tensor(cfg.model.scale_bias).float()),
"colour_scaling": nn.Parameter(torch.tensor(self.cfg.model.colour_scale).float())})
self.scaling_activation = torch.exp
self.opacity_activation = torch.sigmoid
self.relu = nn.ReLU()
def get_parameter_groups(self):
# tune scalars for size, opacity and colour modulation
return [{'params': self.all_params.parameters()}]
def forward(self, inputs):
model = self.unidepth
input_img = inputs["color_aug", 0, 0]
# here we need the intrinsics of the source image to condition on
# the depth prediction. needs to account for padding
intrinsics = inputs[("K_src", 0)]
b, c, h, w = inputs["color_aug", 0, 0].shape
with torch.no_grad():
_, depth_outs = unidepthv1_forward(model, input_img, intrinsics, self.skip_camera)
outs = {}
outs[("gauss_opacity", 0)] = self.gauss_opacity.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
* self.opacity_activation(self.all_params["opacity_scaling"])
if not self.cfg.model.scale_with_depth:
outs[("gauss_scaling", 0)] = self.gauss_scaling.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
* self.scaling_activation(self.all_params["scale_scaling"])
else:
outs[("gauss_scaling", 0)] = self.gauss_scaling.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
* self.scaling_activation(self.all_params["scale_scaling"]) * depth_outs["depth"] / 10.0
outs[("gauss_rotation", 0)] = self.gauss_rotation.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
outs[("gauss_offset", 0)] = self.gauss_offset.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
outs[("gauss_features_rest", 0)] = self.gauss_features_rest.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
# rendering adds 0.5 to go from rendered colours to output
outs[("gauss_features_dc", 0)] = (input_img - 0.5)* self.relu(self.all_params["colour_scaling"])
outs[("depth", 0)] = depth_outs["depth"]
return outs
class UniDepthSplatter(nn.Module):
def __init__(
self,
cfg
):
super().__init__()
self.cfg = cfg
config_path = Path("/work/eldar/src/UniDepth")
with open(config_path / "configs/config_v1_cnvnxtl.json") as f:
config = json.load(f)
self.unidepth = UniDepthDepth(self.cfg)
hidden_dim = config["model"]["pixel_decoder"]["hidden_dim"]
expansion = config["model"]["expansion"]
depth = config["model"]["pixel_decoder"]["depths"]
num_heads = config["model"]["num_heads"]
dropout = config["model"]["pixel_decoder"]["dropout"]
layer_scale = 1.0
self.splat_decoder = GaussSplatHead(
cfg,
hidden_dim=hidden_dim,
num_heads=num_heads,
expansion=expansion,
depths=depth,
camera_dim=81,
dropout=dropout,
layer_scale=layer_scale,
)
self.skip_camera = True
def get_parameter_groups(self):
base_lr = self.cfg.optimiser.learning_rate
return [
{'params': self.unidepth.parameters(), "lr": base_lr * 0.05},
{'params': self.splat_decoder.parameters()}
]
def forward(self, inputs):
gauss_head = self.splat_decoder
depth_inputs, depth_outs = self.unidepth(inputs)
depth_feats = depth_outs["depth_feats"]
rays = depth_outs["rays"]
padding = depth_outs["padding"]
B, _, H, W = depth_inputs["image"].shape
# TODO remove hardcoded shapes
common_shape = (28, 38)
gauss_head.set_shapes(common_shape)
gauss_head.set_original_shapes((H, W))
depth_feats = rearrange(depth_feats, "b c h w -> b (h w) c")
outs = gauss_head(
latents_16=depth_feats,
rays_hr=rays,
)
for k, v in outs.items():
pred, _ = _postprocess([v], None, self.unidepth.depth_prediction_model.image_shape,
padding, None, inputs["color_aug", 0, 0].shape[2:4])
outs[k] = pred
outs[("depth", 0)] = depth_outs["depth"]
return outs
class GaussSplatHead(nn.Module):
def __init__(
self,
cfg,
hidden_dim: int,
num_heads: int = 8,
expansion: int = 4,
depths: int | list[int] = 4,
camera_dim: int = 256,
dropout: float = 0.0,
layer_scale: float = 1.0,
) -> None:
super().__init__()
self.cfg = cfg
if isinstance(depths, int):
depths = [depths] * 3
assert len(depths) == 3
self.project_rays16 = MLP(
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim
)
self.project_rays8 = MLP(
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 2
)
self.project_rays4 = MLP(
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 4
)
self.layers_8 = nn.ModuleList([])
self.layers_4 = nn.ModuleList([])
layers_16 = nn.ModuleList([])
self.up8 = ConvUpsample(
hidden_dim, expansion=expansion, layer_scale=layer_scale
)
self.up4 = ConvUpsample(
hidden_dim // 2, expansion=expansion, layer_scale=layer_scale
)
self.up2 = ConvUpsample(
hidden_dim // 4, expansion=expansion, layer_scale=layer_scale
)
split_dimensions, scale, bias = get_splits_and_inits(cfg)
start = 1
self.split_dimensions = split_dimensions[start:]
scale = scale[start:]
bias = bias[start:]
self.num_output_channels = sum(self.split_dimensions)
self.out2 = nn.Conv2d(hidden_dim // 8, self.num_output_channels, 3, padding=1)
# self.out4 = nn.Conv2d(hidden_dim // 4, self.num_output_channels, 3, padding=1)
# self.out8 = nn.Conv2d(hidden_dim // 2, self.num_output_channels, 3, padding=1)
start_channels = 0
for out_channel, b, s in zip(self.split_dimensions, bias, scale):
nn.init.xavier_uniform_(
self.out2.weight[start_channels:start_channels+out_channel,
:, :, :], s)
nn.init.constant_(
self.out2.bias[start_channels:start_channels+out_channel], b)
start_channels += out_channel
for i, (blk_lst, depth) in enumerate(
zip([layers_16, self.layers_8, self.layers_4], depths)
):
if i == 0:
continue
attn_cls = AttentionBlock if i == 0 else NystromBlock
for _ in range(depth):
blk_lst.append(
attn_cls(
hidden_dim // (2**i),
num_heads=num_heads // (2**i),
expansion=expansion,
dropout=dropout,
layer_scale=layer_scale,
)
)
self.scaling_activation = torch.exp
self.opacity_activation = torch.sigmoid
self.rotation_activation = torch.nn.functional.normalize
self.scaling_lambda = cfg.model.scale_lambda
self.sigmoid = nn.Sigmoid()
def set_original_shapes(self, shapes: Tuple[int, int]):
self.original_shapes = shapes
def set_shapes(self, shapes: Tuple[int, int]):
self.shapes = shapes
def forward(
self, latents_16: torch.Tensor, rays_hr: torch.Tensor
) -> torch.Tensor:
shapes = self.shapes
# camera_embedding
# torch.cuda.synchronize()
# start = time()
rays_embedding_16 = F.normalize(
flat_interpolate(rays_hr, old=self.original_shapes, new=shapes), dim=-1
)
rays_embedding_8 = F.normalize(
flat_interpolate(
rays_hr, old=self.original_shapes, new=[x * 2 for x in shapes]
),
dim=-1,
)
rays_embedding_4 = F.normalize(
flat_interpolate(
rays_hr, old=self.original_shapes, new=[x * 4 for x in shapes]
),
dim=-1,
)
rays_embedding_16 = self.project_rays16(rsh_cart_8(rays_embedding_16))
rays_embedding_8 = self.project_rays8(rsh_cart_8(rays_embedding_8))
rays_embedding_4 = self.project_rays4(rsh_cart_8(rays_embedding_4))
# Block 16 - Out 8
latents_8 = self.up8(
rearrange(
latents_16 + rays_embedding_16,
"b (h w) c -> b c h w",
h=shapes[0],
w=shapes[1],
).contiguous()
)
# out8 = self.out8(
# rearrange(
# latents_8, "b (h w) c -> b c h w", h=shapes[0] * 2, w=shapes[1] * 2
# )
# )
# Block 8 - Out 4
for layer in self.layers_8:
latents_8 = layer(latents_8, pos_embed=rays_embedding_8)
latents_4 = self.up4(
rearrange(
latents_8 + rays_embedding_8,
"b (h w) c -> b c h w",
h=shapes[0] * 2,
w=shapes[1] * 2,
).contiguous()
)
# out4 = self.out4(
# rearrange(
# latents_4, "b (h w) c -> b c h w", h=shapes[0] * 4, w=shapes[1] * 4
# )
# )
# Block 4 - Out 2
for layer in self.layers_4:
latents_4 = layer(latents_4, pos_embed=rays_embedding_4)
latents_2 = self.up2(
rearrange(
latents_4 + rays_embedding_4,
"b (h w) c -> b c h w",
h=shapes[0] * 4,
w=shapes[1] * 4,
).contiguous()
)
out2 = self.out2(
rearrange(
latents_2, "b (h w) c -> b c h w", h=shapes[0] * 8, w=shapes[1] * 8
)
)
split_network_outputs = out2.split(self.split_dimensions, dim=1)
last = 5
offset, opacity, scaling, rotation, feat_dc = split_network_outputs[:last]
out = {
("gauss_opacity", 0): self.opacity_activation(opacity),
("gauss_scaling", 0): self.scaling_activation(scaling) * self.scaling_lambda,
("gauss_rotation", 0): self.rotation_activation(rotation),
("gauss_features_dc", 0): feat_dc
}
if self.cfg.model.max_sh_degree > 0:
features_rest = split_network_outputs[last]
out[("gauss_features_rest", 0)] = features_rest
if self.cfg.model.predict_offset:
out[("gauss_offset", 0)] = offset
return out
# return out8, out4, out2, proj_latents_16
|