File size: 11,080 Bytes
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from .unidepth import UniDepthDepth
from unidepth.models import UniDepthV1
from .resnet_encoder import ResnetEncoder
from .gaussian_decoder import GaussianDecoder
from .depth_decoder import DepthDecoder

from networks.layers import disp_to_depth
from networks.gaussian_decoder import get_splits_and_inits


class UniDepthExtended(nn.Module):
    def __init__(self,cfg):
        super().__init__()

        self.cfg = cfg

        self.unidepth = UniDepthDepth(cfg)
        # self.unidepth = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")

        self.parameters_to_train = []
        if self.cfg.model.splat_branch == "resnet":
            self.encoder = ResnetEncoder(cfg.model.num_layers,
                                         cfg.model.weights_init == "pretrained",
                                         cfg.model.resnet_bn_order
                                        )
            # change encoder to take depth as conditioning
            if self.cfg.model.depth_cond:
                self.encoder.encoder.conv1 = nn.Conv2d(
                    4,
                    self.encoder.encoder.conv1.out_channels,
                    kernel_size = self.encoder.encoder.conv1.kernel_size,
                    padding = self.encoder.encoder.conv1.padding,
                    stride = self.encoder.encoder.conv1.stride
                )
            self.parameters_to_train += [{"params": self.encoder.parameters()}]

            # use depth branch only for more gaussians
            if cfg.model.gaussians_per_pixel > 1:
                models ={}
                models["depth"] = DepthDecoder(cfg, self.encoder.num_ch_enc)
                self.parameters_to_train +=[{"params": models["depth"].parameters()}]
                for i in range(cfg.model.gaussians_per_pixel):
                    models["gauss_decoder_"+str(i)] = GaussianDecoder(cfg, self.encoder.num_ch_enc)
                    self.parameters_to_train += [{"params": models["gauss_decoder_"+str(i)].parameters()}]
                    if cfg.model.one_gauss_decoder:
                        break
                self.models = nn.ModuleDict(models)
            else:
                self.gauss_decoder = GaussianDecoder(cfg, self.encoder.num_ch_enc)
                self.parameters_to_train += [{"params": self.gauss_decoder.parameters()}]
        
        elif self.cfg.model.splat_branch == "unidepth_vit" or self.cfg.model.splat_branch == "unidepth_cnvnxtl":
            self.splat_branch = UniDepthDepth(cfg,
                                              return_raw_preds=True)
            # modify the head to output the channels for Gaussian parameters
            self.init_ouput_head_splat_branch()
            self.parameters_to_train +=[{"params": self.splat_branch.parameters()}]

        self.scaling_activation = torch.exp
        self.opacity_activation = torch.sigmoid
        self.rotation_activation = torch.nn.functional.normalize

    def init_ouput_head_splat_branch(self):
        split_dimensions, scale, bias = get_splits_and_inits(self.cfg)
        # the first dim in the output is for depth - we don't use that in this branch
        self.split_dimensions = split_dimensions[1:]
        scale = scale[1:]
        bias = bias[1:]

        self.num_output_channels = sum(self.split_dimensions)

        self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2 = \
            nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.in_channels, 
                      self.num_output_channels,
                kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.kernel_size,
                padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.padding)

        self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4 = \
            nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.in_channels, 
                      self.num_output_channels,
                kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.kernel_size,
                padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.padding)

        self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8 = \
            nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.in_channels, 
                      self.num_output_channels,
                kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.kernel_size,
                padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.padding)

        start_channels = 0
        for out_channel, b, s in zip(split_dimensions, bias, scale):
            nn.init.xavier_uniform_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.weight[start_channels:start_channels+out_channel,
                                :, :, :], s)
            nn.init.constant_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.bias[start_channels:start_channels+out_channel], b)
            start_channels += out_channel
        
        start_channels = 0
        for out_channel, b, s in zip(split_dimensions, bias, scale):
            nn.init.xavier_uniform_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.weight[start_channels:start_channels+out_channel,
                                :, :, :], s)
            nn.init.constant_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.bias[start_channels:start_channels+out_channel], b)
            start_channels += out_channel

        start_channels = 0
        for out_channel, b, s in zip(split_dimensions, bias, scale):
            nn.init.xavier_uniform_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.weight[start_channels:start_channels+out_channel,
                                :, :, :], s)
            nn.init.constant_(
                self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.bias[start_channels:start_channels+out_channel], b)
            start_channels += out_channel

    def get_parameter_groups(self):
        # only the resnet encoder and gaussian parameter decoder are optimisable
        return self.parameters_to_train

    def forward(self, inputs):
        if ('unidepth', 0, 0) in inputs.keys() and inputs[('unidepth', 0, 0)] is not None:
            depth_outs = dict()
            depth_outs["depth"] = inputs[('unidepth', 0, 0)]
        else:
            with torch.no_grad():
                # if self.training and self.cfg.dataset.pad_border_aug > 0:
                #     pad = self.cfg.dataset.pad_border_aug
                #     input = inputs["color_aug", 0, 0][:,:,pad:-pad, pad:-pad]
                #     intrincs = inputs[("K_tgt", 0)]
                # else:
                #     input = inputs["color_aug", 0, 0]
                #     intrincs = inputs[("K_src", 0)]
                _, depth_outs = self.unidepth(inputs)
                # depth_outs = self.unidepth.infer(input, intrincs)
                # if self.training and self.cfg.dataset.pad_border_aug > 0:
                #     depth_outs["depth"] = F.pad(depth_outs["depth"], (pad,pad,pad,pad), mode="replicate")

        outputs_gauss = {}

        K = depth_outs["intrinsics"]
        outputs_gauss[("K_src", 0)] = K
        outputs_gauss[("inv_K_src", 0)] = torch.linalg.inv(K)

        if self.cfg.model.splat_branch == "resnet":
            if self.cfg.model.depth_cond:
                # division by 20 is to put depth in a similar range to RGB
                resnet_input = torch.cat([inputs["color_aug", 0, 0], 
                                          depth_outs["depth"] / 20.0], dim=1)
            else:
                resnet_input = inputs["color_aug", 0, 0]
            resnet_features = self.encoder(resnet_input)
            if self.cfg.model.gaussians_per_pixel > 1:
                pred_depth = dict()
                depth = self.models["depth"](resnet_features)
                if self.cfg.model.depth_type == "disp":
                    for key, v in depth.items():
                        _, pred_depth[("depth", key[1])] = disp_to_depth(v, self.cfg.model.min_depth, self.cfg.model.max_depth)
                elif self.cfg.model.depth_type in ["depth", "depth_inc"]:
                    pred_depth = depth
                pred_depth[("depth", 0)] = rearrange(pred_depth[("depth", 0)], "(b n) ... -> b n ...", n=self.cfg.model.gaussians_per_pixel - 1)
                if self.cfg.model.depth_type in ["depth_inc", "disp_inc"]:
                    pred_depth[("depth", 0)] = torch.cumsum(torch.cat((depth_outs["depth"][:,None,...], pred_depth[("depth", 0)]), dim=1), dim=1)
                else:
                    pred_depth[("depth", 0)] = torch.cat((depth_outs["depth"][:,None,...], pred_depth[("depth", 0)]), dim=1)
                outputs_gauss[("depth", 0)] = rearrange(pred_depth[("depth", 0)], "b n c ... -> (b n) c ...", n = self.cfg.model.gaussians_per_pixel)
                gauss_outs = dict()
                for i in range(self.cfg.model.gaussians_per_pixel):
                    outs = self.models["gauss_decoder_"+str(i)](resnet_features)
                    if not self.cfg.model.one_gauss_decoder:
                        for key, v in outs.items():
                            gauss_outs[key] = outs[key][:,None,...] if i==0 else torch.cat([gauss_outs[key], outs[key][:,None,...]], dim=1)
                    else:
                        gauss_outs |= outs
                for key, v in gauss_outs.items():
                    gauss_outs[key] = rearrange(gauss_outs[key], 'b n ... -> (b n) ...')
                outputs_gauss |= gauss_outs
            else:
                outputs_gauss[("depth", 0)] = depth_outs["depth"]
                outputs_gauss |= self.gauss_decoder(resnet_features)
        elif self.cfg.model.splat_branch == "unidepth_vit" or self.cfg.model.splat_branch == "unidepth_cnvnxtl":
            split_network_outputs = self.splat_branch(inputs)[1].split(self.split_dimensions, dim=1)
            offset, opacity, scaling, rotation, feat_dc = split_network_outputs[:5]

            outputs_gauss |= {
                ("gauss_opacity", 0): self.opacity_activation(opacity),
                ("gauss_scaling", 0): self.scaling_activation(scaling),
                ("gauss_rotation", 0): self.rotation_activation(rotation),
                ("gauss_features_dc", 0): feat_dc
            }

            if self.cfg.model.max_sh_degree > 0:
                features_rest = split_network_outputs[5]
                outputs_gauss[("gauss_features_rest", 0)] = features_rest

            assert self.cfg.model.predict_offset
            outputs_gauss[("gauss_offset", 0)] = offset

        return outputs_gauss