File size: 10,003 Bytes
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath


def get_num_layer_for_convnext_single(var_name, depths):
    """
    Each layer is assigned distinctive layer ids
    """
    if var_name.startswith("downsample_layers"):
        stage_id = int(var_name.split(".")[1])
        layer_id = sum(depths[:stage_id]) + 1
        return layer_id

    elif var_name.startswith("stages"):
        stage_id = int(var_name.split(".")[1])
        block_id = int(var_name.split(".")[2])
        layer_id = sum(depths[:stage_id]) + block_id + 1
        return layer_id

    else:
        return sum(depths) + 1


def get_num_layer_for_convnext(var_name):
    """
    Divide [3, 3, 27, 3] layers into 12 groups; each group is three
    consecutive blocks, including possible neighboring downsample layers;
    adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py
    """
    num_max_layer = 12
    if var_name.startswith("downsample_layers"):
        stage_id = int(var_name.split(".")[1])
        if stage_id == 0:
            layer_id = 0
        elif stage_id == 1 or stage_id == 2:
            layer_id = stage_id + 1
        elif stage_id == 3:
            layer_id = 12
        return layer_id

    elif var_name.startswith("stages"):
        stage_id = int(var_name.split(".")[1])
        block_id = int(var_name.split(".")[2])
        if stage_id == 0 or stage_id == 1:
            layer_id = stage_id + 1
        elif stage_id == 2:
            layer_id = 3 + block_id // 3
        elif stage_id == 3:
            layer_id = 12
        return layer_id
    else:
        return num_max_layer + 1


def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()):
    parameter_group_names = {}
    parameter_group_vars = {}
    skip = {}
    if skip_list is not None:
        skip = skip_list
    elif hasattr(model, "no_weight_decay"):
        skip = model.no_weight_decay()
    num_layers = 12  # sum(model.depths)
    layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2))
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if (
            len(param.shape) == 1
            or name.endswith(".bias")
            or name in skip
            or name.endswith(".gamma")
            or name.endswith(".beta")
        ):
            group_name = "no_decay"
            this_weight_decay = 0.0
        else:
            group_name = "decay"
            this_weight_decay = wd

        # layer_id = get_num_layer_for_convnext_single(name, model.depths)
        layer_id = get_num_layer_for_convnext(name)
        group_name = "layer_%d_%s" % (layer_id, group_name)

        if group_name not in parameter_group_names:
            scale = layer_scale[layer_id]
            cur_lr = lr * scale

            parameter_group_names[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale,
                "lr": cur_lr,
            }
            parameter_group_vars[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale,
                "lr": cur_lr,
            }
        parameter_group_vars[group_name]["params"].append(param)
        parameter_group_names[group_name]["params"].append(name)
    # if is_main_process():
    # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
    return list(parameter_group_vars.values()), [
        v["lr"] for k, v in parameter_group_vars.items()
    ]


class LayerNorm(nn.Module):
    """LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(
                x, self.normalized_shape, self.weight, self.bias, self.eps
            )
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """GRN (Global Response Normalization) layer"""

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class Block(nn.Module):
    """ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.0, mult=4, use_checkpoint=False):
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim, dim, kernel_size=7, padding=3, groups=dim
        )  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, mult * dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(mult * dim)
        self.pwconv2 = nn.Linear(mult * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.use_checkpoint = use_checkpoint

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtV2(nn.Module):
    """ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(
        self,
        in_chans=3,
        depths=[3, 3, 9, 3],
        dims=96,
        drop_path_rate=0.0,
        output_idx=[],
        use_checkpoint=False,
    ):
        super().__init__()
        self.num_layers = len(depths)
        self.depths = output_idx
        self.embed_dims = [
            int(dim) for i, dim in enumerate(dims) for _ in range(depths[i])
        ]
        self.embed_dim = dims[0]

        self.downsample_layers = (
            nn.ModuleList()
        )  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = (
            nn.ModuleList()
        )  # 4 feature resolution stages, each consisting of multiple residual blocks
        self.out_norms = nn.ModuleList()
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.ModuleList(
                [
                    Block(
                        dim=dims[i],
                        drop_path=dp_rates[cur + j],
                        use_checkpoint=use_checkpoint,
                    )
                    for j in range(depths[i])
                ]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        outs = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            for stage in self.stages[i]:
                x = stage(x)
                outs.append(x.permute(0, 2, 3, 1))
        cls_tokens = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs]
        return outs, cls_tokens

    def get_params(self, lr, wd, ld, *args, **kwargs):
        encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld)
        return encoder_p, encoder_lr

    def freeze(self) -> None:
        for module in self.modules():
            module.eval()
        for parameters in self.parameters():
            parameters.requires_grad = False

    @classmethod
    def build(cls, config):
        obj = globals()[config["model"]["encoder"]["name"]](config)
        return obj