File size: 8,726 Bytes
ffbcf9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""
from typing import Tuple
import torch
from torch.nn import functional as F
def generate_rays(
camera_intrinsics: torch.Tensor, image_shape: Tuple[int, int], noisy: bool = False
):
batch_size, device, dtype = (
camera_intrinsics.shape[0],
camera_intrinsics.device,
camera_intrinsics.dtype,
)
height, width = image_shape
# Generate grid of pixel coordinates
pixel_coords_x = torch.linspace(0, width - 1, width, device=device, dtype=dtype)
pixel_coords_y = torch.linspace(0, height - 1, height, device=device, dtype=dtype)
if noisy:
pixel_coords_x += torch.rand_like(pixel_coords_x) - 0.5
pixel_coords_y += torch.rand_like(pixel_coords_y) - 0.5
pixel_coords = torch.stack(
[pixel_coords_x.repeat(height, 1), pixel_coords_y.repeat(width, 1).t()], dim=2
) # (H, W, 2)
pixel_coords = pixel_coords + 0.5
# Calculate ray directions
intrinsics_inv = torch.inverse(camera_intrinsics.float()).to(dtype) # (B, 3, 3)
homogeneous_coords = torch.cat(
[pixel_coords, torch.ones_like(pixel_coords[:, :, :1])], dim=2
) # (H, W, 3)
ray_directions = torch.matmul(
intrinsics_inv, homogeneous_coords.permute(2, 0, 1).flatten(1)
) # (3, H*W)
ray_directions = F.normalize(ray_directions, dim=1) # (B, 3, H*W)
ray_directions = ray_directions.permute(0, 2, 1) # (B, H*W, 3)
theta = torch.atan2(ray_directions[..., 0], ray_directions[..., -1])
phi = torch.acos(ray_directions[..., 1])
# pitch = torch.asin(ray_directions[..., 1])
# roll = torch.atan2(ray_directions[..., 0], - ray_directions[..., 1])
angles = torch.stack([theta, phi], dim=-1)
return ray_directions, angles
@torch.jit.script
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract zbuffer depth
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
# =>
# r = z / sin(phi) / cos(theta)
# y = z / (sin(phi) / cos(phi)) / cos(theta)
# x = z * sin(theta) / cos(theta)
x = z * torch.tan(theta)
y = z / torch.tan(phi) / torch.cos(theta)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
r = spherical_tensor[..., 2] # Extract radius
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
x = r * torch.sin(phi) * torch.sin(theta)
y = r * torch.cos(phi)
z = r * torch.cos(theta) * torch.sin(phi)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
x = spherical_tensor[..., 0] # Extract polar angle
y = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract radius
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
r = torch.sqrt(x**2 + y**2 + z**2)
theta = torch.atan2(x / r, z / r)
phi = torch.acos(y / r)
euclidean_tensor = torch.stack((theta, phi, r), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
pitch = torch.asin(euclidean_tensor[..., 1])
yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
z = euclidean_tensor[..., 2] # Extract zbuffer depth
euclidean_tensor = torch.stack((pitch, yaw, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def unproject_points(
depth: torch.Tensor, camera_intrinsics: torch.Tensor
) -> torch.Tensor:
"""
Unprojects a batch of depth maps to 3D point clouds using camera intrinsics.
Args:
depth (torch.Tensor): Batch of depth maps of shape (B, 1, H, W).
camera_intrinsics (torch.Tensor): Camera intrinsic matrix of shape (B, 3, 3).
Returns:
torch.Tensor: Batch of 3D point clouds of shape (B, 3, H, W).
"""
batch_size, _, height, width = depth.shape
device = depth.device
# Create pixel grid
y_coords, x_coords = torch.meshgrid(
torch.arange(height, device=device),
torch.arange(width, device=device),
indexing="ij",
)
pixel_coords = torch.stack((x_coords, y_coords), dim=-1) # (H, W, 2)
# Get homogeneous coords (u v 1)
pixel_coords_homogeneous = torch.cat(
(pixel_coords, torch.ones((height, width, 1), device=device)), dim=-1
)
pixel_coords_homogeneous = pixel_coords_homogeneous.permute(2, 0, 1).flatten(
1
) # (3, H*W)
# Apply K^-1 @ (u v 1): [B, 3, 3] @ [3, H*W] -> [B, 3, H*W]
unprojected_points = torch.matmul(
torch.inverse(camera_intrinsics), pixel_coords_homogeneous
) # (B, 3, H*W)
unprojected_points = unprojected_points.view(
batch_size, 3, height, width
) # (B, 3, H, W)
unprojected_points = unprojected_points * depth # (B, 3, H, W)
return unprojected_points
@torch.jit.script
def project_points(
points_3d: torch.Tensor,
intrinsic_matrix: torch.Tensor,
image_shape: Tuple[int, int],
) -> torch.Tensor:
# Project 3D points onto the image plane via intrinsics (u v w) = (x y z) @ K^T
points_2d = torch.matmul(points_3d, intrinsic_matrix.transpose(1, 2))
# Normalize projected points: (u v w) -> (u / w, v / w, 1)
points_2d = points_2d[..., :2] / points_2d[..., 2:]
# To pixels (rounding!!!), no int as it breaks gradient
points_2d = points_2d.round()
# pointa need to be inside the image (can it diverge onto all points out???)
valid_mask = (
(points_2d[..., 0] >= 0)
& (points_2d[..., 0] < image_shape[1])
& (points_2d[..., 1] >= 0)
& (points_2d[..., 1] < image_shape[0])
)
# Calculate the flat indices of the valid pixels
flat_points_2d = points_2d[..., 0] + points_2d[..., 1] * image_shape[1]
flat_indices = flat_points_2d.long()
# Create depth maps and counts using scatter_add, (B, H, W)
depth_maps = torch.zeros(
[points_3d.shape[0], *image_shape], device=points_3d.device
)
counts = torch.zeros([points_3d.shape[0], *image_shape], device=points_3d.device)
# Loop over batches to apply masks and accumulate depth/count values
for i in range(points_3d.shape[0]):
valid_indices = flat_indices[i, valid_mask[i]]
depth_maps[i].view(-1).scatter_add_(
0, valid_indices, points_3d[i, valid_mask[i], 2]
)
counts[i].view(-1).scatter_add_(
0, valid_indices, torch.ones_like(points_3d[i, valid_mask[i], 2])
)
# Calculate mean depth for each pixel in each batch
mean_depth_maps = depth_maps / counts.clamp(min=1.0)
return mean_depth_maps.reshape(-1, 1, *image_shape) # (B, 1, H, W)
@torch.jit.script
def downsample(data: torch.Tensor, downsample_factor: int = 2):
N, _, H, W = data.shape
data = data.view(
N,
H // downsample_factor,
downsample_factor,
W // downsample_factor,
downsample_factor,
1,
)
data = data.permute(0, 1, 3, 5, 2, 4).contiguous()
data = data.view(-1, downsample_factor * downsample_factor)
data_tmp = torch.where(data == 0.0, 1e5 * torch.ones_like(data), data)
data = torch.min(data_tmp, dim=-1).values
data = data.view(N, 1, H // downsample_factor, W // downsample_factor)
data = torch.where(data > 1000, torch.zeros_like(data), data)
return data
@torch.jit.script
def flat_interpolate(
flat_tensor: torch.Tensor,
old: Tuple[int, int],
new: Tuple[int, int],
antialias: bool = True,
mode: str = "bilinear",
) -> torch.Tensor:
if old[0] == new[0] and old[1] == new[1]:
return flat_tensor
tensor = flat_tensor.view(flat_tensor.shape[0], old[0], old[1], -1).permute(
0, 3, 1, 2
) # b c h w
tensor_interp = F.interpolate(
tensor,
size=(new[0], new[1]),
mode=mode,
align_corners=False,
antialias=antialias,
)
flat_tensor_interp = tensor_interp.view(
flat_tensor.shape[0], -1, new[0] * new[1]
).permute(
0, 2, 1
) # b (h w) c
return flat_tensor_interp.contiguous()
|