File size: 12,539 Bytes
ffbcf9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

from functools import wraps

import numpy as np
from scipy import interpolate

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat, reduce


def max_stack(tensors):
    return torch.stack(tensors, dim=-1).max(dim=-1)[0]


def softmax_stack(tensors, temperature=1.0):
    return F.softmax(torch.stack(tensors, dim=-1) / temperature, dim=-1).sum(dim=-1)


def mean_stack(tensors):
    if len(tensors) == 1:
        return tensors[0]
    return torch.stack(tensors, dim=-1).mean(dim=-1)


def sum_stack(tensors):
    return torch.stack(tensors, dim=-1).sum(dim=-1)


def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def format_seconds(seconds):
    minutes, seconds = divmod(seconds, 60)
    hours, minutes = divmod(minutes, 60)
    return f"{hours:d}:{minutes:02d}:{seconds:02d}"


def get_params(module, lr, wd):
    skip_list = {}
    skip_keywords = {}
    if hasattr(module, "no_weight_decay"):
        skip_list = module.no_weight_decay()
    if hasattr(module, "no_weight_decay_keywords"):
        skip_keywords = module.no_weight_decay_keywords()
    has_decay = []
    no_decay = []
    for name, param in module.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if (
            (name in skip_list)
            or any((kw in name for kw in skip_keywords))
            or len(param.shape) == 1
        ):
            # if (name in skip_list) or any((kw in name for kw in skip_keywords)):
            # print(name, skip_keywords)
            no_decay.append(param)
        else:
            has_decay.append(param)

    group1 = {
        "params": has_decay,
        "weight_decay": wd,
        "lr": lr,
        "weight_decay_init": wd,
        "weight_decay_base": wd,
        "lr_init": lr,
        "lr_base": lr,
    }
    group2 = {
        "params": no_decay,
        "weight_decay": 0.0,
        "lr": lr,
        "weight_decay_init": 0.0,
        "weight_decay_base": 0.0,
        "weight_decay_final": 0.0,
        "lr_init": lr,
        "lr_base": lr,
    }
    return [group1, group2], [lr, lr]


def get_num_layer_for_swin(var_name, num_max_layer, layers_per_stage):
    if var_name in ("cls_token", "mask_token", "pos_embed", "absolute_pos_embed"):
        return 0
    elif var_name.startswith("patch_embed"):
        return 0
    elif var_name.startswith("layers"):
        if var_name.split(".")[2] == "blocks":
            stage_id = int(var_name.split(".")[1])
            layer_id = int(var_name.split(".")[3]) + sum(layers_per_stage[:stage_id])
            return layer_id + 1
        elif var_name.split(".")[2] == "downsample":
            stage_id = int(var_name.split(".")[1])
            layer_id = sum(layers_per_stage[: stage_id + 1])
            return layer_id
    else:
        return num_max_layer - 1


def get_params_layerdecayswin(module, lr, wd, ld):
    skip_list = {}
    skip_keywords = {}
    if hasattr(module, "no_weight_decay"):
        skip_list = module.no_weight_decay()
    if hasattr(module, "no_weight_decay_keywords"):
        skip_keywords = module.no_weight_decay_keywords()
    layers_per_stage = module.depths
    num_layers = sum(layers_per_stage) + 1
    lrs = []
    params = []
    for name, param in module.named_parameters():
        if not param.requires_grad:
            print(f"{name} frozen")
            continue  # frozen weights
        layer_id = get_num_layer_for_swin(name, num_layers, layers_per_stage)
        lr_cur = lr * ld ** (num_layers - layer_id - 1)
        # if (name in skip_list) or any((kw in name for kw in skip_keywords)) or len(param.shape) == 1 or name.endswith(".bias"):
        if (name in skip_list) or any((kw in name for kw in skip_keywords)):
            wd_cur = 0.0
        else:
            wd_cur = wd
        params.append({"params": param, "weight_decay": wd_cur, "lr": lr_cur})
        lrs.append(lr_cur)
    return params, lrs


def log(t, eps: float = 1e-5):
    return torch.log(t.clamp(min=eps))


def l2norm(t):
    return F.normalize(t, dim=-1)


def exists(val):
    return val is not None


def identity(t, *args, **kwargs):
    return t


def divisible_by(numer, denom):
    return (numer % denom) == 0


def first(arr, d=None):
    if len(arr) == 0:
        return d
    return arr[0]


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def maybe(fn):
    @wraps(fn)
    def inner(x):
        if not exists(x):
            return x
        return fn(x)

    return inner


def once(fn):
    called = False

    @wraps(fn)
    def inner(x):
        nonlocal called
        if called:
            return
        called = True
        return fn(x)

    return inner


def _many(fn):
    @wraps(fn)
    def inner(tensors, pattern, **kwargs):
        return (fn(tensor, pattern, **kwargs) for tensor in tensors)

    return inner


rearrange_many = _many(rearrange)
repeat_many = _many(repeat)
reduce_many = _many(reduce)


def load_pretrained(state_dict, checkpoint):
    checkpoint_model = checkpoint["model"]
    if any([True if "encoder." in k else False for k in checkpoint_model.keys()]):
        checkpoint_model = {
            k.replace("encoder.", ""): v
            for k, v in checkpoint_model.items()
            if k.startswith("encoder.")
        }
        print("Detect pre-trained model, remove [encoder.] prefix.")
    else:
        print("Detect non-pre-trained model, pass without doing anything.")
    print(f">>>>>>>>>> Remapping pre-trained keys for SWIN ..........")
    checkpoint = load_checkpoint_swin(state_dict, checkpoint_model)


def load_checkpoint_swin(model, checkpoint_model):
    state_dict = model.state_dict()
    # Geometric interpolation when pre-trained patch size mismatch with fine-tuned patch size
    all_keys = list(checkpoint_model.keys())
    for key in all_keys:
        if "relative_position_bias_table" in key:
            relative_position_bias_table_pretrained = checkpoint_model[key]
            relative_position_bias_table_current = state_dict[key]
            L1, nH1 = relative_position_bias_table_pretrained.size()
            L2, nH2 = relative_position_bias_table_current.size()
            if nH1 != nH2:
                print(f"Error in loading {key}, passing......")
            else:
                if L1 != L2:
                    print(f"{key}: Interpolate relative_position_bias_table using geo.")
                    src_size = int(L1**0.5)
                    dst_size = int(L2**0.5)

                    def geometric_progression(a, r, n):
                        return a * (1.0 - r**n) / (1.0 - r)

                    left, right = 1.01, 1.5
                    while right - left > 1e-6:
                        q = (left + right) / 2.0
                        gp = geometric_progression(1, q, src_size // 2)
                        if gp > dst_size // 2:
                            right = q
                        else:
                            left = q

                    # if q > 1.090307:
                    #     q = 1.090307

                    dis = []
                    cur = 1
                    for i in range(src_size // 2):
                        dis.append(cur)
                        cur += q ** (i + 1)

                    r_ids = [-_ for _ in reversed(dis)]

                    x = r_ids + [0] + dis
                    y = r_ids + [0] + dis

                    t = dst_size // 2.0
                    dx = np.arange(-t, t + 0.1, 1.0)
                    dy = np.arange(-t, t + 0.1, 1.0)

                    print("Original positions = %s" % str(x))
                    print("Target positions = %s" % str(dx))

                    all_rel_pos_bias = []

                    for i in range(nH1):
                        z = (
                            relative_position_bias_table_pretrained[:, i]
                            .view(src_size, src_size)
                            .float()
                            .numpy()
                        )
                        f_cubic = interpolate.interp2d(x, y, z, kind="cubic")
                        all_rel_pos_bias.append(
                            torch.Tensor(f_cubic(dx, dy))
                            .contiguous()
                            .view(-1, 1)
                            .to(relative_position_bias_table_pretrained.device)
                        )

                    new_rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
                    checkpoint_model[key] = new_rel_pos_bias

    # delete relative_position_index since we always re-init it
    relative_position_index_keys = [
        k for k in checkpoint_model.keys() if "relative_position_index" in k
    ]
    for k in relative_position_index_keys:
        del checkpoint_model[k]

    # delete relative_coords_table since we always re-init it
    relative_coords_table_keys = [
        k for k in checkpoint_model.keys() if "relative_coords_table" in k
    ]
    for k in relative_coords_table_keys:
        del checkpoint_model[k]

    # # re-map keys due to name change
    rpe_mlp_keys = [k for k in checkpoint_model.keys() if "cpb_mlp" in k]
    for k in rpe_mlp_keys:
        checkpoint_model[k.replace("cpb_mlp", "rpe_mlp")] = checkpoint_model.pop(k)

    # delete attn_mask since we always re-init it
    attn_mask_keys = [k for k in checkpoint_model.keys() if "attn_mask" in k]
    for k in attn_mask_keys:
        del checkpoint_model[k]

    encoder_keys = [k for k in checkpoint_model.keys() if k.startswith("encoder.")]
    for k in encoder_keys:
        checkpoint_model[k.replace("encoder.", "")] = checkpoint_model.pop(k)

    return checkpoint_model


def add_padding_metas(out, image_metas):
    device = out.device
    # left, right, top, bottom
    paddings = [img_meta.get("padding_size", [0] * 4) for img_meta in image_metas]
    paddings = torch.stack(paddings).to(device)
    outs = [F.pad(o, padding, value=0.0) for padding, o in zip(paddings, out)]
    return torch.stack(outs)


def remove_padding(out, paddings):
    B, C, H, W = out.shape
    device = out.device
    # left, right, top, bottom
    paddings = torch.stack(paddings).to(device)
    outs = [
        o[:, padding[1] : H - padding[3], padding[0] : W - padding[2]]
        for padding, o in zip(paddings, out)
    ]
    return torch.stack(outs)


def remove_padding_metas(out, image_metas):
    B, C, H, W = out.shape
    device = out.device
    # left, right, top, bottom
    paddings = [
        torch.tensor(img_meta.get("padding_size", [0] * 4)) for img_meta in image_metas
    ]
    return remove_padding(out, paddings)


def ssi_helper(tensor1, tensor2):
    stability_mat = 1e-4 * torch.eye(2, device=tensor1.device)
    tensor2_one = torch.stack([tensor2, torch.ones_like(tensor2)], dim=1)
    scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ (
        tensor2_one.T @ tensor1.unsqueeze(1)
    )
    scale, shift = scale_shift.squeeze().chunk(2, dim=0)
    return scale, shift


def calculate_mean_values(names, values):
    # Create a defaultdict to store sum and count for each name
    name_values = {name: {} for name in names}

    # Iterate through the lists and accumulate values for each name
    for name, value in zip(names, values):
        name_values[name]["sum"] = name_values[name].get("sum", 0.0) + value
        name_values[name]["count"] = name_values[name].get("count", 0.0) + 1

    # Calculate mean values and create the output dictionary
    output_dict = {
        name: name_values[name]["sum"] / name_values[name]["count"]
        for name in name_values
    }

    return output_dict


def remove_leading_dim(infos):
    if isinstance(infos, dict):
        return {k: remove_leading_dim(v) for k, v in infos.items()}
    elif isinstance(infos, torch.Tensor):
        return infos.squeeze(0)
    else:
        return infos