|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Callable, Optional, Tuple, Union, Sequence |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.layers import ( |
|
trunc_normal_, |
|
AvgPool2dSame, |
|
DropPath, |
|
Mlp, |
|
GlobalResponseNormMlp, |
|
LayerNorm2d, |
|
LayerNorm, |
|
create_conv2d, |
|
get_act_layer, |
|
make_divisible, |
|
to_ntuple, |
|
) |
|
|
|
|
|
def get_num_layer_for_convnext(var_name): |
|
""" |
|
Divide [3, 3, 27, 3] layers into 12 groups; each group is three |
|
consecutive blocks, including possible neighboring downsample layers; |
|
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py |
|
""" |
|
if var_name.startswith("downsample_layers"): |
|
stage_id = int(var_name.split(".")[1]) |
|
if stage_id == 0: |
|
layer_id = 0 |
|
elif stage_id == 1 or stage_id == 2: |
|
layer_id = stage_id + 1 |
|
elif stage_id == 3: |
|
layer_id = 12 |
|
|
|
elif var_name.startswith("stages"): |
|
stage_id = int(var_name.split(".")[1]) |
|
block_id = int(var_name.split(".")[3]) |
|
if stage_id == 0 or stage_id == 1: |
|
layer_id = stage_id + 1 |
|
elif stage_id == 2: |
|
layer_id = 3 + block_id // 3 |
|
elif stage_id == 3: |
|
layer_id = 12 |
|
|
|
elif var_name.startswith("stem"): |
|
return 0 |
|
else: |
|
layer_id = 12 |
|
return layer_id + 1 |
|
|
|
|
|
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=None): |
|
parameter_group_names = {} |
|
parameter_group_vars = {} |
|
skip = set() |
|
if skip_list is not None: |
|
skip = skip_list |
|
if hasattr(model, "no_weight_decay"): |
|
skip.update(model.no_weight_decay()) |
|
num_layers = 12 |
|
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2)) |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip: |
|
group_name = "no_decay" |
|
this_wd = 0.0 |
|
else: |
|
group_name = "decay" |
|
this_wd = wd |
|
|
|
layer_id = get_num_layer_for_convnext(name) |
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
|
|
if group_name not in parameter_group_names: |
|
scale = layer_scale[layer_id] |
|
cur_lr = lr * scale |
|
|
|
parameter_group_names[group_name] = { |
|
"weight_decay": this_wd, |
|
"weight_decay_init": this_wd, |
|
"weight_decay_base": this_wd, |
|
"params": [], |
|
"lr_init": cur_lr, |
|
"lr_base": lr, |
|
"lr": cur_lr, |
|
} |
|
parameter_group_vars[group_name] = { |
|
"weight_decay": this_wd, |
|
"weight_decay_init": this_wd, |
|
"weight_decay_base": this_wd, |
|
"params": [], |
|
"lr_init": cur_lr, |
|
"lr_base": lr, |
|
"lr": cur_lr, |
|
} |
|
if this_wd == 0.0: |
|
parameter_group_names[group_name]["weight_decay_final"] = 0.0 |
|
parameter_group_vars[group_name]["weight_decay_final"] = 0.0 |
|
parameter_group_vars[group_name]["params"].append(param) |
|
parameter_group_names[group_name]["params"].append(name) |
|
|
|
|
|
|
|
|
|
return list(parameter_group_vars.values()), [ |
|
v["lr"] for k, v in parameter_group_vars.items() |
|
] |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_chs, out_chs, stride=1, dilation=1): |
|
super().__init__() |
|
avg_stride = stride if dilation == 1 else 1 |
|
if stride > 1 or dilation > 1: |
|
avg_pool_fn = ( |
|
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
) |
|
self.pool = avg_pool_fn( |
|
2, avg_stride, ceil_mode=True, count_include_pad=False |
|
) |
|
else: |
|
self.pool = nn.Identity() |
|
|
|
if in_chs != out_chs: |
|
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) |
|
else: |
|
self.conv = nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.pool(x) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
"""ConvNeXt Block |
|
There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
|
|
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate |
|
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear |
|
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs: int, |
|
out_chs: Optional[int] = None, |
|
kernel_size: int = 7, |
|
stride: int = 1, |
|
dilation: Union[int, Tuple[int, int]] = (1, 1), |
|
mlp_ratio: float = 4, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
ls_init_value: Optional[float] = 1e-6, |
|
act_layer: Union[str, Callable] = "gelu", |
|
norm_layer: Optional[Callable] = None, |
|
drop_path: float = 0.0, |
|
): |
|
""" |
|
|
|
Args: |
|
in_chs: Block input channels. |
|
out_chs: Block output channels (same as in_chs if None). |
|
kernel_size: Depthwise convolution kernel size. |
|
stride: Stride of depthwise convolution. |
|
dilation: Tuple specifying input and output dilation of block. |
|
mlp_ratio: MLP expansion ratio. |
|
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. |
|
conv_bias: Apply bias for all convolution (linear) layers. |
|
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) |
|
ls_init_value: Layer-scale init values, layer-scale applied if not None. |
|
act_layer: Activation layer. |
|
norm_layer: Normalization layer (defaults to LN if not specified). |
|
drop_path: Stochastic depth probability. |
|
""" |
|
super().__init__() |
|
out_chs = out_chs or in_chs |
|
dilation = to_ntuple(2)(dilation) |
|
act_layer = get_act_layer(act_layer) |
|
if not norm_layer: |
|
norm_layer = LayerNorm2d if conv_mlp else LayerNorm |
|
mlp_layer = partial( |
|
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp |
|
) |
|
self.use_conv_mlp = conv_mlp |
|
self.conv_dw = create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation[0], |
|
depthwise=True, |
|
bias=conv_bias, |
|
) |
|
self.norm = norm_layer(out_chs) |
|
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) |
|
self.gamma = ( |
|
nn.Parameter(ls_init_value * torch.ones(out_chs)) |
|
if ls_init_value is not None |
|
else None |
|
) |
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = Downsample( |
|
in_chs, out_chs, stride=stride, dilation=dilation[0] |
|
) |
|
else: |
|
self.shortcut = nn.Identity() |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv_dw(x.contiguous()) |
|
if self.use_conv_mlp: |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
else: |
|
x = x.permute(0, 2, 3, 1).contiguous() |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
if self.gamma is not None: |
|
x = x.mul(self.gamma.reshape(1, -1, 1, 1)) |
|
|
|
x = self.drop_path(x) + self.shortcut(shortcut) |
|
return x.contiguous() |
|
|
|
|
|
class ConvNeXtStage(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
kernel_size=7, |
|
stride=2, |
|
depth=2, |
|
dilation=(1, 1), |
|
drop_path_rates=None, |
|
ls_init_value=1.0, |
|
conv_mlp=False, |
|
conv_bias=True, |
|
use_grn=False, |
|
act_layer="gelu", |
|
norm_layer=None, |
|
norm_layer_cl=None, |
|
): |
|
super().__init__() |
|
self.grad_checkpointing = False |
|
|
|
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: |
|
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 |
|
pad = ( |
|
"same" if dilation[1] > 1 else 0 |
|
) |
|
self.downsample = nn.Sequential( |
|
norm_layer(in_chs), |
|
create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=ds_ks, |
|
stride=stride, |
|
dilation=dilation[0], |
|
padding=pad, |
|
bias=conv_bias, |
|
), |
|
) |
|
in_chs = out_chs |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
drop_path_rates = drop_path_rates or [0.0] * depth |
|
stage_blocks = [] |
|
for i in range(depth): |
|
stage_blocks.append( |
|
ConvNeXtBlock( |
|
in_chs=in_chs, |
|
out_chs=out_chs, |
|
kernel_size=kernel_size, |
|
dilation=dilation[1], |
|
drop_path=drop_path_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if conv_mlp else norm_layer_cl, |
|
) |
|
) |
|
in_chs = out_chs |
|
self.blocks = nn.ModuleList(stage_blocks) |
|
|
|
def forward(self, x): |
|
xs = [] |
|
x = self.downsample(x) |
|
for block in self.blocks: |
|
if self.grad_checkpointing: |
|
x = checkpoint(block, x) |
|
else: |
|
x = block(x) |
|
xs.append(x) |
|
return xs |
|
|
|
|
|
class ConvNeXt(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
output_stride: int = 32, |
|
depths: Tuple[int, ...] = (3, 3, 9, 3), |
|
dims: Tuple[int, ...] = (96, 192, 384, 768), |
|
kernel_sizes: Union[int, Tuple[int, ...]] = 7, |
|
ls_init_value: Optional[float] = 1e-6, |
|
stem_type: str = "patch", |
|
patch_size: int = 4, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
act_layer: Union[str, Callable] = "gelu", |
|
norm_layer: Optional[Union[str, Callable]] = None, |
|
norm_eps: Optional[float] = None, |
|
drop_path_rate: float = 0.0, |
|
output_idx=[], |
|
use_checkpoint=False, |
|
): |
|
""" |
|
Args: |
|
in_chans: Number of input image channels. |
|
num_classes: Number of classes for classification head. |
|
global_pool: Global pooling type. |
|
output_stride: Output stride of network, one of (8, 16, 32). |
|
depths: Number of blocks at each stage. |
|
dims: Feature dimension at each stage. |
|
kernel_sizes: Depthwise convolution kernel-sizes for each stage. |
|
ls_init_value: Init value for Layer Scale, disabled if None. |
|
stem_type: Type of stem. |
|
patch_size: Stem patch size for patch stem. |
|
head_init_scale: Init scaling value for classifier weights and biases. |
|
head_norm_first: Apply normalization before global pool + head. |
|
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. |
|
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. |
|
conv_bias: Use bias layers w/ all convolutions. |
|
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. |
|
act_layer: Activation layer type. |
|
norm_layer: Normalization layer type. |
|
drop_rate: Head pre-classifier dropout rate. |
|
drop_path_rate: Stochastic depth drop rate. |
|
""" |
|
super().__init__() |
|
self.num_layers = len(depths) |
|
self.depths = output_idx |
|
self.embed_dims = [ |
|
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) |
|
] |
|
self.embed_dim = dims[0] |
|
|
|
assert output_stride in (8, 16, 32) |
|
kernel_sizes = to_ntuple(4)(kernel_sizes) |
|
if norm_layer is None: |
|
norm_layer = LayerNorm2d |
|
norm_layer_cl = norm_layer if conv_mlp else LayerNorm |
|
if norm_eps is not None: |
|
norm_layer = partial(norm_layer, eps=norm_eps) |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
else: |
|
assert ( |
|
conv_mlp |
|
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input" |
|
norm_layer_cl = norm_layer |
|
if norm_eps is not None: |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
|
|
self.feature_info = [] |
|
|
|
assert stem_type in ("patch", "overlap", "overlap_tiered") |
|
if stem_type == "patch": |
|
|
|
self.stem = nn.Sequential( |
|
nn.Conv2d( |
|
in_chans, |
|
dims[0], |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=conv_bias, |
|
), |
|
norm_layer(dims[0]), |
|
) |
|
stem_stride = patch_size |
|
else: |
|
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0] |
|
self.stem = nn.Sequential( |
|
nn.Conv2d( |
|
in_chans, |
|
mid_chs, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=conv_bias, |
|
), |
|
nn.Conv2d( |
|
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias |
|
), |
|
norm_layer(dims[0]), |
|
) |
|
stem_stride = 4 |
|
|
|
self.stages = nn.Sequential() |
|
dp_rates = [ |
|
x.tolist() |
|
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths) |
|
] |
|
stages = [] |
|
prev_chs = dims[0] |
|
curr_stride = stem_stride |
|
dilation = 1 |
|
|
|
for i in range(4): |
|
stride = 2 if curr_stride == 2 or i > 0 else 1 |
|
if curr_stride >= output_stride and stride > 1: |
|
dilation *= stride |
|
stride = 1 |
|
curr_stride *= stride |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
out_chs = dims[i] |
|
stages.append( |
|
ConvNeXtStage( |
|
prev_chs, |
|
out_chs, |
|
kernel_size=kernel_sizes[i], |
|
stride=stride, |
|
dilation=(first_dilation, dilation), |
|
depth=depths[i], |
|
drop_path_rates=dp_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
norm_layer_cl=norm_layer_cl, |
|
) |
|
) |
|
prev_chs = out_chs |
|
|
|
self.feature_info += [ |
|
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}") |
|
] |
|
self.stages = nn.ModuleList(stages) |
|
self.mask_token = nn.Parameter(torch.zeros(1, self.embed_dim, 1, 1)) |
|
self.num_features = prev_chs |
|
self.apply(self._init_weights) |
|
self.set_grad_checkpointing(use_checkpoint) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Conv2d): |
|
trunc_normal_(module.weight, std=0.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=0.02) |
|
nn.init.zeros_(module.bias) |
|
|
|
def forward(self, x, masks=None): |
|
outs = [] |
|
x = self.stem(x) |
|
if masks is not None: |
|
masks = torch.nn.functional.interpolate( |
|
masks.float(), size=x.shape[-2:], mode="nearest" |
|
) |
|
x = torch.where(masks.bool(), self.mask_token.to(x.dtype), x).contiguous() |
|
for stage in self.stages: |
|
xs = stage(x) |
|
outs.extend([x.permute(0, 2, 3, 1).contiguous() for x in xs]) |
|
x = xs[-1] |
|
return outs, [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs] |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r"^stem", |
|
blocks=( |
|
r"^stages\.(\d+)" |
|
if coarse |
|
else [ |
|
(r"^stages\.(\d+)\.downsample", (0,)), |
|
(r"^stages\.(\d+)\.blocks\.(\d+)", None), |
|
(r"^norm_pre", (99999,)), |
|
] |
|
), |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
def freeze(self) -> None: |
|
for module in self.modules(): |
|
module.eval() |
|
for parameters in self.parameters(): |
|
parameters.requires_grad = False |
|
|
|
def get_params(self, lr, wd, ld, *args, **kwargs): |
|
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) |
|
return encoder_p, encoder_lr |
|
|
|
def no_weight_decay(self): |
|
return {"mask_token"} |
|
|
|
@classmethod |
|
def build(cls, config): |
|
obj = globals()[config["model"]["encoder"]["name"]](config) |
|
return obj |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
"""Remap FB checkpoints -> timm""" |
|
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict: |
|
return state_dict |
|
if "model" in state_dict: |
|
state_dict = state_dict["model"] |
|
|
|
out_dict = {} |
|
if "visual.trunk.stem.0.weight" in state_dict: |
|
out_dict = { |
|
k.replace("visual.trunk.", ""): v |
|
for k, v in state_dict.items() |
|
if k.startswith("visual.trunk.") |
|
} |
|
if "visual.head.proj.weight" in state_dict: |
|
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"] |
|
out_dict["head.fc.bias"] = torch.zeros( |
|
state_dict["visual.head.proj.weight"].shape[0] |
|
) |
|
elif "visual.head.mlp.fc1.weight" in state_dict: |
|
out_dict["head.pre_logits.fc.weight"] = state_dict[ |
|
"visual.head.mlp.fc1.weight" |
|
] |
|
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"] |
|
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"] |
|
out_dict["head.fc.bias"] = torch.zeros( |
|
state_dict["visual.head.mlp.fc2.weight"].shape[0] |
|
) |
|
return out_dict |
|
|
|
import re |
|
|
|
for k, v in state_dict.items(): |
|
k = k.replace("downsample_layers.0.", "stem.") |
|
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k) |
|
k = re.sub( |
|
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k |
|
) |
|
k = k.replace("dwconv", "conv_dw") |
|
k = k.replace("pwconv", "mlp.fc") |
|
if "grn" in k: |
|
k = k.replace("grn.beta", "mlp.grn.bias") |
|
k = k.replace("grn.gamma", "mlp.grn.weight") |
|
v = v.reshape(v.shape[-1]) |
|
k = k.replace("head.", "head.fc.") |
|
if k.startswith("norm."): |
|
k = k.replace("norm", "head.norm") |
|
if v.ndim == 2 and "head" not in k: |
|
model_shape = model.state_dict()[k].shape |
|
v = v.reshape(model_shape) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
HF_URL = { |
|
"convnext_xxlarge_pt": ( |
|
"laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup", |
|
"open_clip_pytorch_model.bin", |
|
), |
|
"convnext_large_pt": ( |
|
"laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup", |
|
"open_clip_pytorch_model.bin", |
|
), |
|
"convnext_large": ( |
|
"timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384", |
|
"pytorch_model.bin", |
|
), |
|
} |
|
|