|
""" |
|
Author: Luigi Piccinelli |
|
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) |
|
""" |
|
|
|
import os |
|
import platform |
|
import warnings |
|
import subprocess |
|
|
|
import cv2 |
|
|
|
import torch |
|
import torch.utils.data.distributed |
|
from torch import multiprocessing as mp |
|
from torch import distributed as dist |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def barrier(): |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
dist.barrier() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def is_rank_zero(args): |
|
return args.rank == 0 |
|
|
|
|
|
def get_dist_info(): |
|
if dist.is_available() and dist.is_initialized(): |
|
rank = dist.get_rank() |
|
world_size = dist.get_world_size() |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
return rank, world_size |
|
|
|
|
|
def setup_multi_processes(cfg): |
|
"""Setup multi-processing environment variables.""" |
|
|
|
if platform.system() != "Windows": |
|
mp_start_method = cfg.get("mp_start_method", "fork") |
|
current_method = mp.get_start_method(allow_none=True) |
|
if current_method is not None and current_method != mp_start_method: |
|
warnings.warn( |
|
f"Multi-processing start method `{mp_start_method}` is " |
|
f"different from the previous setting `{current_method}`." |
|
f"It will be force set to `{mp_start_method}`. You can change " |
|
f"this behavior by changing `mp_start_method` in your config." |
|
) |
|
mp.set_start_method(mp_start_method, force=True) |
|
|
|
|
|
opencv_num_threads = cfg.get("opencv_num_threads", 0) |
|
cv2.setNumThreads(opencv_num_threads) |
|
|
|
|
|
|
|
workers_per_gpu = cfg.get("workers_per_gpu", 4) |
|
|
|
if "OMP_NUM_THREADS" not in os.environ and workers_per_gpu > 1: |
|
omp_num_threads = 1 |
|
warnings.warn( |
|
f"Setting OMP_NUM_THREADS environment variable for each process " |
|
f"to be {omp_num_threads} in default, to avoid your system being " |
|
f"overloaded, please further tune the variable for optimal " |
|
f"performance in your application as needed." |
|
) |
|
os.environ["OMP_NUM_THREADS"] = str(omp_num_threads) |
|
|
|
|
|
if "MKL_NUM_THREADS" not in os.environ and workers_per_gpu > 1: |
|
mkl_num_threads = os.environ.get("OMP_NUM_THREADS", 1) |
|
warnings.warn( |
|
f"Setting MKL_NUM_THREADS environment variable for each process " |
|
f"to be {mkl_num_threads} in default, to avoid your system being " |
|
f"overloaded, please further tune the variable for optimal " |
|
f"performance in your application as needed." |
|
) |
|
os.environ["MKL_NUM_THREADS"] = str(mkl_num_threads) |
|
|
|
|
|
def setup_slurm(backend: str, port: str) -> None: |
|
"""Initialize slurm distributed training environment. |
|
If argument ``port`` is not specified, then the master port will be system |
|
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system |
|
environment variable, then a default port ``29500`` will be used. |
|
Args: |
|
backend (str): Backend of torch.distributed. |
|
port (int, optional): Master port. Defaults to None. |
|
""" |
|
proc_id = int(os.environ["SLURM_PROCID"]) |
|
ntasks = int(os.environ["SLURM_NTASKS"]) |
|
node_list = os.environ["SLURM_NODELIST"] |
|
|
|
num_gpus = torch.cuda.device_count() |
|
|
|
torch.cuda.set_device(proc_id % num_gpus) |
|
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1") |
|
os.environ["MASTER_PORT"] = str(port) |
|
os.environ["MASTER_ADDR"] = addr |
|
os.environ["WORLD_SIZE"] = str(ntasks) |
|
os.environ["LOCAL_RANK"] = str(proc_id % num_gpus) |
|
os.environ["RANK"] = str(proc_id) |
|
print( |
|
proc_id, |
|
ntasks, |
|
num_gpus, |
|
proc_id % num_gpus, |
|
node_list, |
|
addr, |
|
os.environ["MASTER_PORT"], |
|
os.system("nvidia-smi -L"), |
|
) |
|
dist.init_process_group(backend, rank=proc_id, world_size=ntasks) |
|
|
|
|
|
def sync_tensor_across_gpus(t, dim=0, cat=True): |
|
if t is None or not (dist.is_available() and dist.is_initialized()): |
|
return t |
|
t = torch.atleast_1d(t) |
|
group = dist.group.WORLD |
|
group_size = torch.distributed.get_world_size(group) |
|
|
|
local_size = torch.tensor(t.size(dim), device=t.device) |
|
all_sizes = [torch.zeros_like(local_size) for _ in range(group_size)] |
|
dist.all_gather(all_sizes, local_size) |
|
max_size = max(all_sizes) |
|
size_diff = max_size.item() - local_size.item() |
|
if size_diff: |
|
padding = torch.zeros(size_diff, device=t.device, dtype=t.dtype) |
|
t = torch.cat((t, padding)) |
|
|
|
gather_t_tensor = [torch.zeros_like(t) for _ in range(group_size)] |
|
dist.all_gather(gather_t_tensor, t) |
|
all_ts = [] |
|
for t, size in zip(gather_t_tensor, all_sizes): |
|
all_ts.append(t[:size]) |
|
if cat: |
|
return torch.cat(all_ts, dim=0) |
|
return all_ts |
|
|
|
|
|
import pickle |
|
|
|
|
|
def sync_string_across_gpus(keys: list[str], device, dim=0): |
|
keys_serialized = pickle.dumps(keys, protocol=pickle.HIGHEST_PROTOCOL) |
|
keys_serialized_tensor = torch.frombuffer(keys_serialized, dtype=torch.uint8).to( |
|
device |
|
) |
|
keys_serialized_tensor = sync_tensor_across_gpus( |
|
keys_serialized_tensor, dim=0, cat=False |
|
) |
|
keys = [ |
|
key |
|
for keys in keys_serialized_tensor |
|
for key in pickle.loads(bytes(keys.cpu().tolist())) |
|
] |
|
return keys |
|
|