|
""" |
|
Author: Luigi Piccinelli |
|
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) |
|
""" |
|
|
|
from math import pi |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from einops import rearrange, repeat |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
def __init__( |
|
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None |
|
): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * pi |
|
self.scale = scale |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
if mask is None: |
|
mask = torch.zeros( |
|
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool |
|
) |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** ( |
|
2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats |
|
) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
def __repr__(self, _repr_indent=4): |
|
head = "Positional encoding " + self.__class__.__name__ |
|
body = [ |
|
"num_pos_feats: {}".format(self.num_pos_feats), |
|
"temperature: {}".format(self.temperature), |
|
"normalize: {}".format(self.normalize), |
|
"scale: {}".format(self.scale), |
|
] |
|
|
|
lines = [head] + [" " * _repr_indent + line for line in body] |
|
return "\n".join(lines) |
|
|
|
|
|
class LearnedSinusoidalPosEmb(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
assert (dim % 2) == 0 |
|
half_dim = dim // 2 |
|
self.weights = nn.Parameter(torch.randn(half_dim)) |
|
|
|
def forward(self, x): |
|
x = rearrange(x, "b -> b 1") |
|
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi |
|
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) |
|
fouriered = torch.cat((x, fouriered), dim=-1) |
|
return fouriered |
|
|
|
|
|
def broadcat(tensors, dim=-1): |
|
num_tensors = len(tensors) |
|
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) |
|
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" |
|
shape_len = list(shape_lens)[0] |
|
dim = (dim + shape_len) if dim < 0 else dim |
|
dims = list(zip(*map(lambda t: list(t.shape), tensors))) |
|
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] |
|
assert all( |
|
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] |
|
), "invalid dimensions for broadcastable concatentation" |
|
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) |
|
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) |
|
expanded_dims.insert(dim, (dim, dims[dim])) |
|
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) |
|
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) |
|
return torch.cat(tensors, dim=dim) |
|
|
|
|
|
def rotate_half(x): |
|
x = rearrange(x, "... (d r) -> ... d r", r=2) |
|
x1, x2 = x.unbind(dim=-1) |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return rearrange(x, "... d r -> ... (d r)") |
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs=None, |
|
freqs_for="lang", |
|
theta=10000, |
|
max_freq=10, |
|
num_freqs=1, |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == "lang": |
|
freqs = 1.0 / ( |
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
) |
|
elif freqs_for == "pixel": |
|
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi |
|
elif freqs_for == "constant": |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f"unknown modality {freqs_for}") |
|
|
|
if ft_seq_len is None: |
|
ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs_h = torch.einsum("..., f -> ... f", t, freqs) |
|
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) |
|
|
|
freqs_w = torch.einsum("..., f -> ... f", t, freqs) |
|
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) |
|
|
|
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) |
|
|
|
self.register_buffer("freqs_cos", freqs.cos()) |
|
self.register_buffer("freqs_sin", freqs.sin()) |
|
|
|
print("======== shape of rope freq", self.freqs_cos.shape, "========") |
|
|
|
def forward(self, t, start_index=0): |
|
rot_dim = self.freqs_cos.shape[-1] |
|
end_index = start_index + rot_dim |
|
assert ( |
|
rot_dim <= t.shape[-1] |
|
), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" |
|
t_left, t, t_right = ( |
|
t[..., :start_index], |
|
t[..., start_index:end_index], |
|
t[..., end_index:], |
|
) |
|
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) |
|
return torch.cat((t_left, t, t_right), dim=-1) |
|
|
|
|
|
class VisionRotaryEmbeddingFast(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs=None, |
|
freqs_for="lang", |
|
theta=10000, |
|
max_freq=10, |
|
num_freqs=1, |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == "lang": |
|
freqs = 1.0 / ( |
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
) |
|
elif freqs_for == "pixel": |
|
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi |
|
elif freqs_for == "constant": |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f"unknown modality {freqs_for}") |
|
|
|
if ft_seq_len is None: |
|
ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs = torch.einsum("..., f -> ... f", t, freqs) |
|
freqs = repeat(freqs, "... n -> ... (n r)", r=2) |
|
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) |
|
|
|
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) |
|
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) |
|
|
|
self.register_buffer("freqs_cos", freqs_cos) |
|
self.register_buffer("freqs_sin", freqs_sin) |
|
|
|
def forward(self, t): |
|
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin |
|
|
|
|
|
from math import log2 |
|
|
|
|
|
def generate_fourier_features( |
|
x: torch.Tensor, |
|
dim: int = 512, |
|
max_freq: int = 64, |
|
use_cos: bool = False, |
|
use_log: bool = False, |
|
cat_orig: bool = False, |
|
): |
|
x_orig = x |
|
device, dtype, input_dim = x.device, x.dtype, x.shape[-1] |
|
num_bands = dim // (2 * input_dim) if use_cos else dim // input_dim |
|
|
|
if use_log: |
|
scales = 2.0 ** torch.linspace( |
|
0.0, log2(max_freq), steps=num_bands, device=device, dtype=dtype |
|
) |
|
else: |
|
scales = torch.linspace( |
|
1.0, max_freq / 2, num_bands, device=device, dtype=dtype |
|
) |
|
|
|
x = x.unsqueeze(-1) |
|
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] |
|
|
|
x = x * scales * pi |
|
x = torch.cat( |
|
( |
|
[x.sin(), x.cos()] |
|
if use_cos |
|
else [ |
|
x.sin(), |
|
] |
|
), |
|
dim=-1, |
|
) |
|
x = x.flatten(-2) |
|
if cat_orig: |
|
return torch.cat((x, x_orig), dim=-1) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|