""" Author: Luigi Piccinelli Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) """ import os import platform import warnings import subprocess import cv2 import torch import torch.utils.data.distributed from torch import multiprocessing as mp from torch import distributed as dist def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def barrier(): if not is_dist_avail_and_initialized(): return dist.barrier() def is_main_process(): return get_rank() == 0 def is_rank_zero(args): return args.rank == 0 def get_dist_info(): if dist.is_available() and dist.is_initialized(): rank = dist.get_rank() world_size = dist.get_world_size() else: rank = 0 world_size = 1 return rank, world_size def setup_multi_processes(cfg): """Setup multi-processing environment variables.""" # set multi-process start method as `fork` to speed up the training if platform.system() != "Windows": mp_start_method = cfg.get("mp_start_method", "fork") current_method = mp.get_start_method(allow_none=True) if current_method is not None and current_method != mp_start_method: warnings.warn( f"Multi-processing start method `{mp_start_method}` is " f"different from the previous setting `{current_method}`." f"It will be force set to `{mp_start_method}`. You can change " f"this behavior by changing `mp_start_method` in your config." ) mp.set_start_method(mp_start_method, force=True) # disable opencv multithreading to avoid system being overloaded opencv_num_threads = cfg.get("opencv_num_threads", 0) cv2.setNumThreads(opencv_num_threads) # setup OMP threads # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa workers_per_gpu = cfg.get("workers_per_gpu", 4) if "OMP_NUM_THREADS" not in os.environ and workers_per_gpu > 1: omp_num_threads = 1 warnings.warn( f"Setting OMP_NUM_THREADS environment variable for each process " f"to be {omp_num_threads} in default, to avoid your system being " f"overloaded, please further tune the variable for optimal " f"performance in your application as needed." ) os.environ["OMP_NUM_THREADS"] = str(omp_num_threads) # setup MKL threads if "MKL_NUM_THREADS" not in os.environ and workers_per_gpu > 1: mkl_num_threads = os.environ.get("OMP_NUM_THREADS", 1) warnings.warn( f"Setting MKL_NUM_THREADS environment variable for each process " f"to be {mkl_num_threads} in default, to avoid your system being " f"overloaded, please further tune the variable for optimal " f"performance in your application as needed." ) os.environ["MKL_NUM_THREADS"] = str(mkl_num_threads) def setup_slurm(backend: str, port: str) -> None: """Initialize slurm distributed training environment. If argument ``port`` is not specified, then the master port will be system environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system environment variable, then a default port ``29500`` will be used. Args: backend (str): Backend of torch.distributed. port (int, optional): Master port. Defaults to None. """ proc_id = int(os.environ["SLURM_PROCID"]) ntasks = int(os.environ["SLURM_NTASKS"]) node_list = os.environ["SLURM_NODELIST"] num_gpus = torch.cuda.device_count() torch.cuda.set_device(proc_id % num_gpus) addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1") os.environ["MASTER_PORT"] = str(port) os.environ["MASTER_ADDR"] = addr os.environ["WORLD_SIZE"] = str(ntasks) os.environ["LOCAL_RANK"] = str(proc_id % num_gpus) os.environ["RANK"] = str(proc_id) print( proc_id, ntasks, num_gpus, proc_id % num_gpus, node_list, addr, os.environ["MASTER_PORT"], os.system("nvidia-smi -L"), ) dist.init_process_group(backend, rank=proc_id, world_size=ntasks) def sync_tensor_across_gpus(t, dim=0, cat=True): if t is None or not (dist.is_available() and dist.is_initialized()): return t t = torch.atleast_1d(t) group = dist.group.WORLD group_size = torch.distributed.get_world_size(group) local_size = torch.tensor(t.size(dim), device=t.device) all_sizes = [torch.zeros_like(local_size) for _ in range(group_size)] dist.all_gather(all_sizes, local_size) max_size = max(all_sizes) size_diff = max_size.item() - local_size.item() if size_diff: padding = torch.zeros(size_diff, device=t.device, dtype=t.dtype) t = torch.cat((t, padding)) gather_t_tensor = [torch.zeros_like(t) for _ in range(group_size)] dist.all_gather(gather_t_tensor, t) all_ts = [] for t, size in zip(gather_t_tensor, all_sizes): all_ts.append(t[:size]) if cat: return torch.cat(all_ts, dim=0) return all_ts import pickle def sync_string_across_gpus(keys: list[str], device, dim=0): keys_serialized = pickle.dumps(keys, protocol=pickle.HIGHEST_PROTOCOL) keys_serialized_tensor = torch.frombuffer(keys_serialized, dtype=torch.uint8).to( device ) keys_serialized_tensor = sync_tensor_across_gpus( keys_serialized_tensor, dim=0, cat=False ) keys = [ key for keys in keys_serialized_tensor for key in pickle.loads(bytes(keys.cpu().tolist())) ] return keys