Spaces:
Runtime error
Runtime error
File size: 2,287 Bytes
5dd070e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import streamlit as st
from utils import set_page_config, display_sidebar
import os
# Set page configuration
set_page_config()
# Title and description
st.title("CodeGen Hub")
st.markdown("""
Welcome to CodeGen Hub - A platform for training and using code generation models with Hugging Face integration.
### Core Features:
- Upload and preprocess Python code datasets for model training
- Configure and train models with customizable parameters
- Generate code predictions using trained models through an interactive interface
- Monitor training progress with visualizations and detailed logs
- Seamless integration with Hugging Face Hub for model management
Navigate through the different sections using the sidebar menu.
""")
# Display sidebar
display_sidebar()
# Create the session state for storing information across app pages
if 'datasets' not in st.session_state:
st.session_state.datasets = {}
if 'trained_models' not in st.session_state:
st.session_state.trained_models = {}
if 'training_logs' not in st.session_state:
st.session_state.training_logs = []
if 'training_progress' not in st.session_state:
st.session_state.training_progress = {}
# Display getting started card
st.subheader("Getting Started")
col1, col2 = st.columns(2)
with col1:
st.info("""
1. π Start by uploading or selecting a Python code dataset in the **Dataset Management** section.
2. π οΈ Configure and train your model in the **Model Training** section.
""")
with col2:
st.info("""
3. π‘ Generate code predictions using your trained models in the **Code Generation** section.
4. π Access your models on Hugging Face Hub for broader use.
""")
# Display platform statistics if available
st.subheader("Platform Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Datasets Available", len(st.session_state.datasets))
with col2:
st.metric("Trained Models", len(st.session_state.trained_models))
with col3:
# Calculate active training jobs
active_jobs = sum(1 for progress in st.session_state.training_progress.values()
if progress.get('status') == 'running')
st.metric("Active Training Jobs", active_jobs)
|