File size: 13,087 Bytes
5dd070e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import streamlit as st
import threading
import random
import time
from datetime import datetime
from utils import add_log, timestamp

# Handle missing dependencies
try:
    import torch
    import pandas as pd
    from transformers import TrainingArguments as HFTrainingArguments
    from transformers import Trainer, AutoModelForCausalLM, AutoTokenizer
    from datasets import Dataset, DatasetDict
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False
    HFTrainingArguments = None
    
    # For demo purposes
    class DummyTrainer:
        def __init__(self, **kwargs):
            self.callback = type('obj', (object,), {'__init__': lambda self: None})
            
        def train(self):
            pass

def initialize_training_progress(model_id):
    """
    Initialize training progress tracking for a model.
    
    Args:
        model_id: Identifier for the model
    """
    if 'training_progress' not in st.session_state:
        st.session_state.training_progress = {}
        
    st.session_state.training_progress[model_id] = {
        'status': 'initialized',
        'current_epoch': 0,
        'total_epochs': 0,
        'loss_history': [],
        'started_at': timestamp(),
        'completed_at': None,
        'progress': 0.0
    }

def update_training_progress(model_id, epoch=None, loss=None, status=None, progress=None, total_epochs=None):
    """
    Update training progress for a model.
    
    Args:
        model_id: Identifier for the model
        epoch: Current epoch
        loss: Current loss value
        status: Training status
        progress: Progress percentage (0-100)
        total_epochs: Total number of epochs
    """
    if 'training_progress' not in st.session_state or model_id not in st.session_state.training_progress:
        initialize_training_progress(model_id)
        
    progress_data = st.session_state.training_progress[model_id]
    
    if epoch is not None:
        progress_data['current_epoch'] = epoch
    
    if loss is not None:
        progress_data['loss_history'].append(loss)
    
    if status is not None:
        progress_data['status'] = status
        if status == 'completed':
            progress_data['completed_at'] = timestamp()
            progress_data['progress'] = 100.0
    
    if progress is not None:
        progress_data['progress'] = progress
        
    if total_epochs is not None:
        progress_data['total_epochs'] = total_epochs

def tokenize_dataset(dataset, tokenizer, max_length=512):
    """
    Tokenize a dataset for model training.
    
    Args:
        dataset: The dataset to tokenize
        tokenizer: The tokenizer to use
        max_length: Maximum sequence length
        
    Returns:
        Dataset: Tokenized dataset
    """
    def tokenize_function(examples):
        return tokenizer(examples['code'], padding='max_length', truncation=True, max_length=max_length)
    
    tokenized_dataset = dataset.map(tokenize_function, batched=True)
    return tokenized_dataset

def train_model_thread(model_id, dataset_name, base_model_name, training_args, device, stop_event):
    """
    Thread function for training a model.
    
    Args:
        model_id: Identifier for the model
        dataset_name: Name of the dataset to use
        base_model_name: Base model from Hugging Face
        training_args: Training arguments
        device: Device to use for training (cpu/cuda)
        stop_event: Threading event to signal stopping
    """
    try:
        # Get dataset
        dataset = st.session_state.datasets[dataset_name]['data']
        
        # Initialize model and tokenizer
        add_log(f"Initializing model {base_model_name} for training")
        tokenizer = AutoTokenizer.from_pretrained(base_model_name)
        model = AutoModelForCausalLM.from_pretrained(base_model_name)
        
        # Check if tokenizer has padding token
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            model.config.pad_token_id = model.config.eos_token_id
        
        # Tokenize dataset
        add_log(f"Tokenizing dataset {dataset_name}")
        train_dataset = tokenize_dataset(dataset['train'], tokenizer)
        val_dataset = tokenize_dataset(dataset['validation'], tokenizer)
        
        # Update training progress
        update_training_progress(
            model_id, 
            status='running',
            total_epochs=training_args.num_train_epochs
        )
        
        # Define custom callback to track progress
        class CustomCallback(Trainer.callback):
            def on_epoch_end(self, args, state, control, **kwargs):
                current_epoch = state.epoch
                epoch_loss = state.log_history[-1].get('loss', 0)
                update_training_progress(
                    model_id, 
                    epoch=current_epoch, 
                    loss=epoch_loss,
                    progress=(current_epoch / training_args.num_train_epochs) * 100
                )
                add_log(f"Epoch {current_epoch}/{training_args.num_train_epochs} completed. Loss: {epoch_loss:.4f}")
                
                # Check if training should be stopped
                if stop_event.is_set():
                    add_log(f"Training for model {model_id} was manually stopped")
                    control.should_training_stop = True
        
        # Configure training arguments
        args = HFTrainingArguments(
            output_dir=f"./results/{model_id}",
            evaluation_strategy="epoch",
            learning_rate=training_args.learning_rate,
            per_device_train_batch_size=training_args.batch_size,
            per_device_eval_batch_size=training_args.batch_size,
            num_train_epochs=training_args.num_train_epochs,
            weight_decay=0.01,
            save_total_limit=1,
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=model,
            args=args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            tokenizer=tokenizer,
            callbacks=[CustomCallback]
        )
        
        # Train the model
        add_log(f"Starting training for model {model_id}")
        trainer.train()
        
        # Save the model
        if not stop_event.is_set():
            add_log(f"Training completed for model {model_id}")
            update_training_progress(model_id, status='completed')
            
            # Save to session state
            st.session_state.trained_models[model_id] = {
                'model': model,
                'tokenizer': tokenizer,
                'info': {
                    'id': model_id,
                    'base_model': base_model_name,
                    'dataset': dataset_name,
                    'created_at': timestamp(),
                    'epochs': training_args.num_train_epochs,
                    'learning_rate': training_args.learning_rate,
                    'batch_size': training_args.batch_size
                }
            }
        
    except Exception as e:
        add_log(f"Error during training model {model_id}: {str(e)}", "ERROR")
        update_training_progress(model_id, status='failed')

class TrainingArguments:
    def __init__(self, learning_rate, batch_size, num_train_epochs):
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        self.num_train_epochs = num_train_epochs

def start_model_training(model_id, dataset_name, base_model_name, learning_rate, batch_size, epochs):
    """
    Start model training in a separate thread.
    
    Args:
        model_id: Identifier for the model
        dataset_name: Name of the dataset to use
        base_model_name: Base model from Hugging Face
        learning_rate: Learning rate for training
        batch_size: Batch size for training
        epochs: Number of training epochs
        
    Returns:
        threading.Event: Event to signal stopping the training
    """
    # Use simulate_training instead if transformers isn't available
    if not TRANSFORMERS_AVAILABLE:
        add_log("No transformers library available, using simulation mode")
        return simulate_training(model_id, dataset_name, base_model_name, epochs)
        
    # Create training arguments
    training_args = TrainingArguments(
        learning_rate=learning_rate,
        batch_size=batch_size,
        num_train_epochs=epochs
    )
    
    # Determine device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    add_log(f"Using device: {device}")
    
    # Initialize training progress
    initialize_training_progress(model_id)
    
    # Create stop event
    stop_event = threading.Event()
    
    # Start training thread
    training_thread = threading.Thread(
        target=train_model_thread,
        args=(model_id, dataset_name, base_model_name, training_args, device, stop_event)
    )
    training_thread.start()
    
    return stop_event

def stop_model_training(model_id, stop_event):
    """
    Stop model training.
    
    Args:
        model_id: Identifier for the model
        stop_event: Threading event to signal stopping
    """
    if stop_event.is_set():
        return
        
    add_log(f"Stopping training for model {model_id}")
    stop_event.set()
    
    # Update training progress
    if 'training_progress' in st.session_state and model_id in st.session_state.training_progress:
        progress_data = st.session_state.training_progress[model_id]
        if progress_data['status'] == 'running':
            progress_data['status'] = 'stopped'
            progress_data['completed_at'] = timestamp()

def get_running_training_jobs():
    """
    Get list of currently running training jobs.
    
    Returns:
        list: List of model IDs with running training jobs
    """
    running_jobs = []
    
    if 'training_progress' in st.session_state:
        for model_id, progress in st.session_state.training_progress.items():
            if progress['status'] == 'running':
                running_jobs.append(model_id)
                
    return running_jobs

# For demo purposes - Simulate training progress without actual model training
def simulate_training_thread(model_id, dataset_name, base_model_name, epochs, stop_event):
    """
    Simulate training progress for demonstration purposes.
    
    Args:
        model_id: Identifier for the model
        dataset_name: Name of the dataset to use
        base_model_name: Base model from Hugging Face
        epochs: Number of training epochs
        stop_event: Threading event to signal stopping
    """
    add_log(f"Starting simulated training for model {model_id}")
    update_training_progress(model_id, status='running', total_epochs=epochs)
    
    for epoch in range(1, epochs + 1):
        if stop_event.is_set():
            add_log(f"Simulated training for model {model_id} was manually stopped")
            update_training_progress(model_id, status='stopped')
            return
            
        # Simulate epoch time
        time.sleep(2)
        
        # Generate random loss that decreases over time
        loss = max(0.1, 2.0 - (epoch / epochs) * 1.5 + random.uniform(-0.1, 0.1))
        
        # Update progress
        update_training_progress(
            model_id,
            epoch=epoch,
            loss=loss,
            progress=(epoch / epochs) * 100
        )
        
        add_log(f"Epoch {epoch}/{epochs} completed. Loss: {loss:.4f}")
    
    # Training completed
    add_log(f"Simulated training completed for model {model_id}")
    update_training_progress(model_id, status='completed')
    
    # Create dummy model and tokenizer
    tokenizer = AutoTokenizer.from_pretrained(base_model_name)
    model = AutoModelForCausalLM.from_pretrained(base_model_name)
    
    # Save to session state
    st.session_state.trained_models[model_id] = {
        'model': model,
        'tokenizer': tokenizer,
        'info': {
            'id': model_id,
            'base_model': base_model_name,
            'dataset': dataset_name,
            'created_at': timestamp(),
            'epochs': epochs,
            'simulated': True
        }
    }

def simulate_training(model_id, dataset_name, base_model_name, epochs):
    """
    Start simulated training in a separate thread.
    
    Args:
        model_id: Identifier for the model
        dataset_name: Name of the dataset to use
        base_model_name: Base model from Hugging Face
        epochs: Number of training epochs
        
    Returns:
        threading.Event: Event to signal stopping the training
    """
    # Initialize training progress
    initialize_training_progress(model_id)
    
    # Create stop event
    stop_event = threading.Event()
    
    # Start training thread
    training_thread = threading.Thread(
        target=simulate_training_thread,
        args=(model_id, dataset_name, base_model_name, epochs, stop_event)
    )
    training_thread.start()
    
    return stop_event